A practice-oriented framework for stationary and nonstationary flood frequency analysis

被引:12
作者
Vidrio-Sahagun, Cuauhtemoc Tonatiuh [1 ]
Ruschkowski, Jake [1 ]
He, Jianxun [1 ]
Pietroniro, Alain [1 ]
机构
[1] Univ Calgary, Schulich Sch Engn, Civil Engn, 2500 Univ Drive NW, Calgary, AB T2N 1N4, Canada
关键词
Flood frequency analysis framework; Stationarity; Nonstationarity; Uncertainty; Software; CLIMATE-CHANGE; EXTREME PRECIPITATION; SPAWNING HABITAT; WHITE STURGEON; KOOTENAI RIVER; MANN-KENDALL; TIME-SERIES; UNIT-ROOT; TRENDS; RISK;
D O I
10.1016/j.envsoft.2024.105940
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In flood frequency analysis (FFA), choices of distribution and methods can hinder the reproducibility of results. Besides, changes in climate, land use/cover, and water management can induce nonstationarity. Frameworks to select between stationary FFA (S-FFA) and nonstationary FFA (NS-FFA) are lacking, and NS-FFA tools are limited. Therefore, this paper introduces a systematic and software-supported framework enabling repeatable workflows for both S-FFA and NS-FFA. The framework has three modules to a) process flood series for exploratory data analysis (EDA) and NS-FFA model determination (if needed), b) select the S-FFA or NS-FFA approach underpinned by the EDA, and c) perform FFA including model determination, parameter estimation, uncertainty quantification, and model performance assessment. The framework incorporates various distributions, methods, and metrics, and recent advancements in NS-FFA for model determination and uncertainty quantification and allows for the modeller's intervention while ensuring reproducibility. The software is freely available to the public.
引用
收藏
页数:19
相关论文
共 133 条
[61]   An Overview of Flood Concepts, Challenges, and Future Directions [J].
Mishra, Ashok ;
Mukherjee, Sourav ;
Merz, Bruno ;
Singh, Vijay P. ;
Wright, Daniel B. ;
Villarini, Gabriele ;
Paul, Subir ;
Kumar, D. Nagesh ;
Khedun, C. Prakash ;
Niyogi, Dev ;
Schumann, Guy ;
Stedinger, Jery R. .
JOURNAL OF HYDROLOGIC ENGINEERING, 2022, 27 (06)
[62]   Detection of Change in Flood Return Levels under Global Warming [J].
Mondal, Arpita ;
Mujumdar, P. P. .
JOURNAL OF HYDROLOGIC ENGINEERING, 2016, 21 (08)
[63]  
Natural Resources Canada, 2019, Federal Hydrologic and Hydraulic Procedures for Floodplain Delineation, DOI [10.4095/299808, DOI 10.4095/299808]
[64]   Assessing extremes in hydroclimatology: A review on probabilistic methods [J].
Nerantzaki, Sofia D. ;
Papalexiou, Simon Michael .
JOURNAL OF HYDROLOGY, 2022, 605
[65]   A nonstationary index-flood technique for estimating extreme quantiles for annual maximum streamflow [J].
O'Brien, Nicole L. ;
Burn, Donald H. .
JOURNAL OF HYDROLOGY, 2014, 519 :2040-2048
[66]   Improved Extreme Rainfall Frequency Analysis Using a Two-Step Kappa Approach [J].
O'Shea, Declan ;
Nathan, Rory ;
Sharma, Ashish ;
Wasko, Conrad .
WATER RESOURCES RESEARCH, 2023, 59 (04)
[67]   Frequency of Recurrent Extremes under Nonstationarity [J].
Obeysekera, Jayantha ;
Salas, Jose D. .
JOURNAL OF HYDROLOGIC ENGINEERING, 2016, 21 (05)
[68]   Quantifying the Uncertainty of Design Floods under Nonstationary Conditions [J].
Obeysekera, Jayantha ;
Salas, Jose D. .
JOURNAL OF HYDROLOGIC ENGINEERING, 2014, 19 (07) :1438-1446
[69]   Risk of extreme events under nonstationary conditions [J].
Olsen, JR ;
Lambert, JH ;
Haimes, YY .
RISK ANALYSIS, 1998, 18 (04) :497-510
[70]   Block bootstrap for Mann-Kendall trend test of serially dependent data [J].
Onoz, Bihrat ;
Bayazit, Mehmetcik .
HYDROLOGICAL PROCESSES, 2012, 26 (23) :3552-3560