An investigation of Earth surface deformation by SBAS-InSAR analysis

被引:2
|
作者
Bidgoli, Reza Dehghani [1 ]
Esfahan, Ehsan Zandi [2 ]
Pirasteh-Anosheh, Hadi [3 ,4 ]
机构
[1] Univ Kashan, Fac Nat Resources & Earth Sci, Dept Nat Engn, Kashan 8731753153, Iran
[2] Agr Res Educ & Extens Org AREEO, Res Inst Forests & Rangelands, Rangeland Res Div, Tehran 1496813111, Iran
[3] AREEO, Natl Salin Res Ctr, Yazd 8917357676, Iran
[4] AREEO, Fars Agr & Nat Resources Res & Educ Ctr, Nat Resources Dept, Shiraz 7155863511, Iran
基金
美国国家科学基金会;
关键词
Aquifer; InSAR; Subsidence; Groundwater; Interferometer; LAND SUBSIDENCE; TIME-SERIES; GROUNDWATER EXPLOITATION; RADAR INTERFEROMETRY; SAR INTERFEROMETRY; BEIJING PLAIN; AREA; PERSISTENT; WITHDRAWAL;
D O I
10.1007/s12210-023-01219-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Land subsidence, whether in its gradual down-settling form, creeping ground fracturing, or sudden sinkholes, is considered one of Iran's most catastrophic environmental challenges. The present study employed interferometric synthetic-aperture radar (InSAR) to detect land displacement in Garmsar City. The output maps reveal significant subsidence at 30 cm year-1 rates. According to the correlated subsidence map and piezometer data, groundwater harvesting for urban, industrial, and agricultural uses is primarily responsible for subsidence. High dependence on underground water resources and the absence of surface water resources in Iran's central regions have led to a radical decline in groundwater heads. For this target, 17 frames of images during 2015-2019 with a small temporal-perpendicular baseline were allocated and analyzed using the small baseline subset (SBAS). After removing unnecessary phases and noise, phase shift due to land deformation was extracted and converted to surface displacement. The InSAR analysis revealed a maximum of 37 cm and at least 33 cm subsidence for the Garmsar plain, and the average annual subsidence is estimated to be 36 cm, which is very close to the subsidence rate of the Tehran and Varamin plains. High-subsidence areas were generally located in the northern part of the Garmsar Plain, and subsidence rates decreased in the Southeast. The temporal and regional relationships between groundwater data and subsidence suggest that the general pattern of subsidence in the Garmsar Plain is caused by groundwater overexploitation, leading to widespread surface deformation. Since Garmsar is close to the capital, water resources are under pressure. By managing water resources in this area, this phenomenon will be reduced.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 50 条
  • [1] An investigation of Earth surface deformation by SBAS-InSAR analysis
    Reza Dehghani Bidgoli
    Ehsan Zandi Esfahan
    Hadi Pirasteh-Anosheh
    Rendiconti Lincei. Scienze Fisiche e Naturali, 2024, 35 : 213 - 221
  • [2] MONITORING LAND DEFORMATION DUE TO GROUND WATER EXPLOITATION AND RECHARGE WITH SBAS-INSAR TECHNIQUE
    Lu, Yan-yan
    Chen, De-liang
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (01): : 368 - 379
  • [3] Mapping Surface Deformation in Rwanda and Neighboring Areas Using SBAS-InSAR
    Mugabushaka, Adrien
    Li, Zhenhong
    Zhang, Xuesong
    Song, Chuang
    Han, Bingquan
    Chen, Bo
    Liu, Zhenjiang
    Chen, Yi
    REMOTE SENSING, 2024, 16 (23)
  • [4] SBAS-InSAR analysis of surface deformation at Mauna Loa and Kilauea volcanoes in Hawaii
    Casu, Francesco
    Lanari, Riccardo
    Sansosti, Eugenio
    Solaro, Giuseppe
    Tizzani, Pietro
    Poland, Michael
    Miklius, Asta
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2421 - +
  • [5] SBAS-InSAR/GNSS Surface Deformation Assessment in Arid Environments of Najran, Saudi Arabia
    Adem, Esubalew
    Chaabani, Anis
    Elfeki, Amro
    Zhang, Lifu
    Elhag, Mohamed
    EARTH SYSTEMS AND ENVIRONMENT, 2023, 7 (03) : 601 - 616
  • [6] Urban surface deformation monitoring and prediction by integrating SBAS-InSAR and Elman neural network
    Teng, Chaoqun
    Wang, Lei
    Jiang, Chuang
    SURVEY REVIEW, 2024, 56 (394) : 18 - 31
  • [7] LANDSLIDE SURFACE DEFORMATION ANALYSIS USING SBAS-INSAR IN THE SOUTHERN PART OF THE SUKABUMI AREA, INDONESIA
    Rosyidy, Muhamad Khairul
    Dimyati, Muhammad
    Shidiq, Iqbal Putut Ash
    Zulkarnain, Faris
    Rahaningtyas, Nurul Sri
    Syamsuddin, Riza Putera
    Zein, Farhan Makarim
    GEOGRAPHIA TECHNICA, 2021, 16 : 138 - 152
  • [8] MAPPING OVERALL TAIYUAN GRABEN BASIN DEFORMATION WITH SBAS-INSAR TECHNIQUE
    Liu, Yuanyuan
    Zhao, Chaoying
    Zhang, Qin
    Yang, Chengsheng
    Zhang, Jing
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2877 - 2880
  • [9] SBAS-InSAR/GNSS Surface Deformation Assessment in Arid Environments of Najran, Saudi Arabia
    Esubalew Adem
    Anis Chaabani
    Amro Elfeki
    Lifu Zhang
    Mohamed Elhag
    Earth Systems and Environment, 2023, 7 : 601 - 616
  • [10] Time series land subsidence monitoring and prediction based on SBAS-InSAR and GeoTemporal transformer model
    Zhang, Jiayi
    Gao, Jian
    Gao, Fanzong
    EARTH SCIENCE INFORMATICS, 2024, 17 (06) : 5899 - 5911