Classification of Electrocardiogram Signals for Arrhythmia Detection Using Convolutional Neural Network

被引:0
作者
Raza, Muhammad Aleem [1 ]
Anwar, Muhammad [2 ]
Nisar, Kashif [3 ]
Ibrahim, Ag. Asri Ag [3 ]
Raza, Usman Ahmed [1 ]
Khan, Sadiq Ali [4 ]
Ahmad, Fahad [5 ]
机构
[1] Lahore Lead Univ, Dept Comp Sci & IT, Lahore 54000, Pakistan
[2] Univ Educ Lahore, Dept Informat Sci, Div Sci & Technol, Lahore 54000, Pakistan
[3] Univ Malaysia Sabah, Fac Comp & Informat, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
[4] Karachi Univ, Comp Sci Dept, UBIT, Karachi 75270, Pakistan
[5] Jouf Univ, Dept Basic Sci, Deanship Common Year 1, Sakaka 72341, Aljouf, Saudi Arabia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 77卷 / 03期
关键词
Arrhythmia; ECG signal; deep learning; convolutional neural network; physioNet MIT-BIH arrhythmia database; HEARTBEAT CLASSIFICATION;
D O I
10.32604/cmc.2023.032275
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the help of computer-aided diagnostic systems, cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease. However, the early diagnosis of cardiac arrhythmia is one of the most challenging tasks. The manual analysis of electrocardiogram (ECG) data with the help of the Holter monitor is challenging. Currently, the Convolutional Neural Network (CNN) is receiving considerable attention from researchers for automatically identifying ECG signals. This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute (ANSI) standards and the Association for the Advancement of Medical Instruments (AAMI). The Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia dataset is used for the experiment. The proposed model outperformed the previous model in terms of accuracy and achieved a sensitivity of 99.0% and a positivity predictively 99.2% in the detection of a Ventricular Ectopic Beat (VEB). Moreover, it also gained a sensitivity of 99.0% and positivity predictively of 99.2% for the detection of a supraventricular ectopic beat (SVEB). The overall accuracy of the proposed model is 99.68%.
引用
收藏
页码:3817 / 3834
页数:18
相关论文
共 29 条
[1]   A deep convolutional neural network model to classify heartbeats [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Tan, Ru San .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :389-396
[2]   Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Lih, Oh Shu ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 405 :81-90
[3]  
Ahmad F., 2022, Egyptian Informatics Journal, V2022, P1
[4]   Traffic Priority-Aware Medical Data Dissemination Scheme for IoT Based WBASN Healthcare Applications [J].
Anwar, Muhammad ;
Masud, Farhan ;
Butt, Rizwan Aslam ;
Idrus, Sevia Mahdaliza ;
Ahmad, Mohammad Nazir ;
Bajuri, Mohd Yazid .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03) :4443-4456
[5]  
Anwar M, 2017, TELKOMNIKA (Telecommunication Computing Electronics and Control), V15, P1088, DOI [10.12928/telkomnika.v15i3.5793, DOI 10.12928/TELKOMNIKA.V15I3.5793]
[6]   Arrhythmia Classification of ECG Signals Using Hybrid Features [J].
Anwar, Syed Muhammad ;
Gul, Maheen ;
Majid, Muhammad ;
Alnowami, Majdi .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2018, 2018
[7]   Arrhythmia Classification Using Long Short-Term Memory with Adaptive Learning Rate [J].
Assodiky, Hilmy ;
Syarif, Iwan ;
Badriyah, Tessy .
EMITTER-INTERNATIONAL JOURNAL OF ENGINEERING TECHNOLOGY, 2018, 6 (01) :75-91
[8]   Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images [J].
Ben Naceur, Mostefa ;
Saouli, Rachida ;
Akil, Mohamed ;
Kachouri, Rostom .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 166 :39-49
[9]  
Celin S., 2017, Journalof Pharmaceutical Sciences and Research, V9, P183
[10]  
Alhussainy AMH, 2020, Iraqi Journal of Information & Communications Technology, V3, P12, DOI 10.31987/ijict.3.3.106