Parameter estimation for fractional mixed fractional Brownian motion based on discrete observations

被引:2
作者
Ralchenko, Kostiantyn [1 ]
Yakovliev, Mykyta [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine
来源
MODERN STOCHASTICS-THEORY AND APPLICATIONS | 2024年 / 11卷 / 01期
关键词
Fractional Brownian motion; mixed model; strong consistency; ergodic theorem; asymptotic normality; LIKELIHOOD DRIFT ESTIMATION; GAUSSIAN-PROCESSES; EQUITY WARRANTS; PRICING MODEL;
D O I
10.15559/23-VMSTA234
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The object of investigation is the mixed fractional Brownian motion of the form X-t= kappa B-t(H1) + sigma B-t(H2) , driven by two independent fractional Brownian motions B-1(H) and B-2(H) with Hurst parameters H-1 < H-2. Strongly consistent estimators of unknown model parameters (H-1, H-2, kappa(2), sigma(2))T are constructed based on the equidistant observations of a trajectory. Joint asymptotic normality of these estimators is proved for 0 < H-1 < H-2 < 3/4.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 33 条
[1]  
Arcones M.A., 1994, The Annals of Probability, V22, P2242
[2]   MIXED GAUSSIAN PROCESSES: A FILTERING APPROACH [J].
Cai, Chunhao ;
Chigansky, Pavel ;
Kleptsyna, Marina .
ANNALS OF PROBABILITY, 2016, 44 (04) :3032-3075
[3]   Mixed fractional Brownian motion [J].
Cheridito, P .
BERNOULLI, 2001, 7 (06) :913-934
[4]   Specification analysis of affine term structure models [J].
Dai, Q ;
Singleton, KJ .
JOURNAL OF FINANCE, 2000, 55 (05) :1943-1978
[5]  
Ding Z., 1993, Journal of Empirical Finance, V1, P83, DOI DOI 10.1016/0927-5398(93)90006-D
[6]  
DOZZI M., 2015, Stat. Inference Stoch. Process., V18, P151, DOI [10.1007/s11203-014-9106-5, DOI 10.1007/S11203-014-9106-5]
[7]   Maximum likelihood estimators from discrete data modeled by mixed fractional Brownian motion with application to the Nordic stock markets [J].
Dufitinema, Josephine ;
Pynnonen, Seppo ;
Sottinen, Tommi .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (09) :5264-5287
[8]   The fractional mixed fractional Brownian motion [J].
El-Nouty, C .
STATISTICS & PROBABILITY LETTERS, 2003, 65 (02) :111-120
[9]   Mixed fractional Brownian motion: some related questions for computer network traffic modeling [J].
Filatova, Daria .
ICSES 2008 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS, CONFERENCE PROCEEDINGS, 2008, :393-396
[10]   The pricing of credit default swaps under a generalized mixed fractional Brownian motion [J].
He, Xinjiang ;
Chen, Wenting .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 404 :26-33