Tensor-based embedding for graph-based semi-supervised approaches

被引:3
作者
Ioannis, Georgoulas [1 ]
Eftychios, Protopapadakis [2 ]
Konstantinos, Makantasis [3 ]
Anastasios, Doulamis [1 ]
机构
[1] Natl Tech Univ Athens, Athens, Greece
[2] Univ Macedonia, Thessaloniki, Greece
[3] Univ Malta, Msida, Malta
来源
PROCEEDINGS OF THE 16TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2023 | 2023年
基金
欧盟地平线“2020”;
关键词
tensor-based embedding; graph-based; semi-supervised learning; hyperspectral data; CLASSIFICATION;
D O I
10.1145/3594806.3596550
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel approach to multiclass classification tasks, utilizing tensor-based embeddings for graph-based semi-supervised learning. The proposed method utilizes a tensor decomposition algorithm to create embeddings that capture the essential features of the data. These are used by various graph-based semi-supervised approach to construct a graph capable to propagate the information from labeled to unlabeled nodes, classifying available data. The proposed method was tested on hyperspectral datasets. The results demonstrate the potential of such combinatory tensor-based semi-supervised approaches.
引用
收藏
页码:632 / 637
页数:6
相关论文
共 18 条
[11]   Tensor-Based Classification Models for Hyperspectral Data Analysis [J].
Makantasis, Konstantinos ;
Doulamis, Anastasios D. ;
Doulamis, Nikolaos D. ;
Nikitakis, Antonis .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (12) :6884-6898
[12]   Hyperspectral Imagery Classification via Random Multigraphs Ensemble Learning [J].
Miao, Yanling ;
Chen, Mulin ;
Yuan, Yuan ;
Chanussot, Jocelyn ;
Wang, Qi .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :641-653
[13]   Stacked Autoencoders Driven by Semi-Supervised Learning for Building Extraction from near Infrared Remote Sensing Imagery [J].
Protopapadakis, Eftychios ;
Doulamis, Anastasios ;
Doulamis, Nikolaos ;
Maltezos, Evangelos .
REMOTE SENSING, 2021, 13 (03) :1-24
[14]   Graph-Based Semi-Supervised Learning: A Comprehensive Review [J].
Song, Zixing ;
Yang, Xiangli ;
Xu, Zenglin ;
King, Irwin .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) :8174-8194
[15]   A survey on semi-supervised learning [J].
Van Engelen, Jesper E. ;
Hoos, Holger H. .
MACHINE LEARNING, 2020, 109 (02) :373-440
[16]   Online classification of visual tasks for industrial workflow monitoring [J].
Voulodimos, Athanasios ;
Kosmopoulos, Dimitrios ;
Veres, Galina ;
Grabner, Helmut ;
Van Gool, Luc ;
Varvarigou, Theodora .
NEURAL NETWORKS, 2011, 24 (08) :852-860
[17]  
Zhou DY, 2004, ADV NEUR IN, V16, P321
[18]  
Zhu X, 2002, LEARNING LABELED UNL