FIBERED TORIC VARIETIES

被引:0
作者
Khovanskii, Askold [1 ,2 ]
Monin, Leonid [3 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
[2] Moscow Independent Univ, Moscow, Russia
[3] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
关键词
Toric varieties; toric variety bundles; Newton polyhedra; POLYTOPES;
D O I
10.17323/1609-4514-2023-23-4-545-558
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A toric variety is called fibered if it can be represented as a total space of fibre bundle over toric base and with toric fiber. Fibered toric varieties form a special case of toric variety bundles. In this note we first give an introduction to the class of fibered toric varieties. Then we use them to illustrate some known and conjectural results on topol-ogy and intersection theory of general toric variety bundles. Finally, using the language of fibered toric varieties, we compute the equivariant cohomology rings of smooth complete toric varieties.
引用
收藏
页码:545 / 558
页数:14
相关论文
共 50 条
[31]   Toric varieties with ample tangent bundle [J].
Wu, Kuang-Yu .
ALGEBRAIC COMBINATORICS, 2024, 7 (01) :1-7
[32]   DIAGONAL SPLITTINGS OF TORIC VARIETIES AND UNIMODULARITY [J].
Chou, Jed ;
Hering, Milena ;
Payne, Sam ;
Tramel, Rebecca ;
Whitney, Ben .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (05) :1911-1920
[33]   The Gerstenhaber productof affine toric varieties [J].
Filip, Matej .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (03) :1146-1162
[34]   DIVISORIAL COHOMOLOGY VANISHING ON TORIC VARIETIES [J].
Perling, Markus .
DOCUMENTA MATHEMATICA, 2011, 16 :209-251
[35]   Asymptotic weights of syzygies of toric varieties [J].
Zhou, Xin .
JOURNAL OF ALGEBRA, 2017, 480 :144-167
[36]   Higher order selfdual toric varieties [J].
Alicia Dickenstein ;
Ragni Piene .
Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 :1759-1777
[37]   On derived categories of arithmetic toric varieties [J].
Ballard, Matthew ;
Duncan, Alexander ;
McFaddin, Patrick .
ANNALS OF K-THEORY, 2019, 4 (02) :211-242
[38]   On reduced arc spaces of toric varieties [J].
Dumanski, Ilya ;
Feigin, Evgeny ;
Makedonskyi, Ievgen ;
Makhlin, Igor .
ALGEBRA & NUMBER THEORY, 2025, 19 (02) :313-363
[39]   Strong cohomological rigidity of toric varieties [J].
Choi, Suyoung ;
Park, Seonjeong .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (05) :971-992
[40]   Equivariant Burnside groups and toric varieties [J].
Kresch, Andrew ;
Tschinkel, Yuri .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (05) :3013-3039