Bounds for Aα-eigenvalues

被引:0
作者
da Silva Jr, Joao Domingos Gomes [1 ]
Oliveira, Carla Silva [2 ]
da Costa, Liliana Manuela G. C. [3 ]
机构
[1] Ctr Fed Educ Tecnol Rio De Janeiro, Dept Engn Prod, Rio De Janeiro, Brazil
[2] Escola Nacl Ciencias Estat, Dept Matemat, Rio De Janeiro, Brazil
[3] Colegio Pedro II, Dept Matemat, Rio De Janeiro, Brazil
关键词
A(alpha)-matrix; A(alpha)-eigenvalues; bounds; SPECTRAL-RADIUS; A(ALPHA)-SPECTRAL RADIUS; ZAGREB INDEXES; EIGENVALUES; SUM;
D O I
10.1051/ro/2023144
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let G be a graph with adjacency matrix A(G) and degree diagonal matrix D(G). In 2017, Nikiforov (V. Nikiforov, Appl. Anal. Discret. Math. 11 (2017) 81-107.) defined the matrix A alpha(G), as a convex combination of A(G) and D(G), the following way, A(alpha)(G) = alpha A(G) + (1 - alpha)D(G) where alpha is an element of [0,1]. In this paper we present some new upper and lower bounds for the largest, second largest and the smallest eigenvalue of A(alpha)-matrix. Moreover, extremal graphs attaining some of these bounds are characterized.
引用
收藏
页码:2783 / 2798
页数:16
相关论文
共 31 条
[1]   On the Ace-spectral radius of connected graphs [J].
Alhevaz, Abdollah ;
Baghipur, Maryam ;
Ganie, Hilal Ahmad ;
Das, Kinkar Chandra .
ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (01)
[2]   Bounds for eigenvalues of the adjacency matrix of a graph [J].
Bhunia, Pintu ;
Bag, Santanu ;
Paul, Kallol .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (04) :415-432
[3]   On the second largest Aα-eigenvalues of graphs [J].
Chen, Yuanyuan ;
Li, Dan ;
Meng, Jixiang .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 580 :343-358
[4]   Sums of powers of the degrees of a graph [J].
Cioaba, Sebastian M. .
DISCRETE MATHEMATICS, 2006, 306 (16) :1959-1964
[5]   Note on the sum of the smallest and largest eigenvalues of a triangle-free graph [J].
Csikvari, Peter .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 650 :92-97
[6]  
Cvetkovic D., 2009, An introduction to the theory of graph spectra
[7]  
Das, 2003, KRAGUJEV J MATH, V25, P19
[8]   Maximizing the sum of the squares of the degrees of a graph [J].
Das, KC .
DISCRETE MATHEMATICS, 2004, 285 (1-3) :57-66
[9]   Zagreb indices of graphs [J].
Das, Kinkar Ch ;
Xu, Kexiang ;
Nam, Junki .
FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (03) :567-582
[10]   The spectral radius of graphs on surfaces [J].
Ellingham, MN ;
Zha, XY .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 78 (01) :45-56