Open-loop analog programmable electrochemical memory array

被引:30
作者
Chen, Peng [1 ]
Liu, Fenghao [1 ]
Lin, Peng [1 ,2 ]
Li, Peihong [1 ]
Xiao, Yu [1 ]
Zhang, Bihua [1 ]
Pan, Gang [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Peoples R China
[2] Zhejiang Univ, State Key Lab Brain Machine Intelligence, Hangzhou, Peoples R China
关键词
D O I
10.1038/s41467-023-41958-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Emerging memories have been developed as new physical infrastructures for hosting neural networks owing to their low-power analog computing characteristics. However, accurately and efficiently programming devices in an analog-valued array is still largely limited by the intrinsic physical non-idealities of the devices, thus hampering their applications in in-situ training of neural networks. Here, we demonstrate a passive electrochemical memory (ECRAM) array with many important characteristics necessary for accurate analog programming. Different image patterns can be open-loop and serially programmed into our ECRAM array, achieving high programming accuracies without any feedback adjustments. The excellent open-loop analog programmability has led us to in-situ train a bilayer neural network and reached software-like classification accuracy of 99.4% to detect poisonous mushrooms. The training capability is further studied in simulation for large-scale neural networks such as VGG-8. Our results present a new solution for implementing learning functions in an artificial intelligence hardware using emerging memories. Memory devices with open-loop analog programmability are highly desired in training tasks. Here, the authors developed an electrochemical memory array that can be accurately programmed without any feedback, offering unique capabilities for training.
引用
收藏
页数:9
相关论文
共 59 条
[1]   Challenges hindering memristive neuromorphic hardware from going mainstream [J].
Adam, Gina C. ;
Khiat, Ali ;
Prodromakis, Themis .
NATURE COMMUNICATIONS, 2018, 9
[2]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[3]   A self-adaptive hardware with resistive switching synapses for experience-based neurocomputing [J].
Bianchi, S. ;
Munoz-Martin, I. ;
Covi, E. ;
Bricalli, A. ;
Piccolboni, G. ;
Regev, A. ;
Molas, G. ;
Nodin, J. F. ;
Andrieu, F. ;
Ielmini, D. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[4]   A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations [J].
Cai, Fuxi ;
Correll, Justin M. ;
Lee, Seung Hwan ;
Lim, Yong ;
Bothra, Vishishtha ;
Zhang, Zhengya ;
Flynn, Michael P. ;
Lu, Wei D. .
NATURE ELECTRONICS, 2019, 2 (07) :290-299
[5]   SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations [J].
Choi, Shinhyun ;
Tan, Scott H. ;
Li, Zefan ;
Kim, Yunjo ;
Choi, Chanyeol ;
Chen, Pai-Yu ;
Yeon, Hanwool ;
Yu, Shimeng ;
Kim, Jeehwan .
NATURE MATERIALS, 2018, 17 (04) :335-+
[6]   CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators [J].
Cui, Jinsong ;
An, Fufei ;
Qian, Jiangchao ;
Wu, Yuxuan ;
Sloan, Luke L. ;
Pidaparthy, Saran ;
Zuo, Jian-Min ;
Cao, Qing .
NATURE ELECTRONICS, 2023, 6 (04) :292-+
[7]   Nanoionic memristive phenomena in metal oxides: the valence change mechanism [J].
Dittmann, Regina ;
Menzel, Stephan ;
Waser, Rainer .
ADVANCES IN PHYSICS, 2021, 70 (02) :155-349
[8]  
Dua D., 2017, UCI MACHINE LEARNING
[9]   Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing [J].
Fuller, Elliot J. ;
Keene, Scott T. ;
Melianas, Armantas ;
Wang, Zhongrui ;
Agarwal, Sapan ;
Li, Yiyang ;
Tuchman, Yaakov ;
James, Conrad D. ;
Marinella, Matthew J. ;
Yang, J. Joshua ;
Salleo, Alberto ;
Talin, A. Alec .
SCIENCE, 2019, 364 (6440) :570-+
[10]   Li-Ion Synaptic Transistor for Low Power Analog Computing [J].
Fuller, Elliot J. ;
El Gabaly, Farid ;
Leonard, Franois ;
Agarwal, Sapan ;
Plimpton, Steven J. ;
Jacobs-Gedrim, Robin B. ;
James, Conrad D. ;
Marinella, Matthew J. ;
Talin, A. Alec .
ADVANCED MATERIALS, 2017, 29 (04)