Microscale Imaging of Thermal Conductivity Suppression at Grain Boundaries

被引:24
作者
Isotta, Eleonora [1 ]
Jiang, Shizhou [2 ]
Moller, Gregory [3 ]
Zevalkink, Alexandra [4 ]
Snyder, G. Jeffrey [1 ]
Balogun, Oluwaseyi [2 ,5 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[3] FAMU FSU Coll Engn, Dept Chem & Biomed Engn, Tallahassee, FL 32310 USA
[4] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA
[5] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA
关键词
frequency domain thermoreflectance; Gibbs excess; grain boundaries; Kapitza resistance; SnTe; thermal conductivity; thermal imaging; THERMOELECTRIC PERFORMANCE; PHONON-SCATTERING; RESISTANCE; SNTE; CONDUCTANCE; TRANSPORT;
D O I
10.1002/adma.202302777
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Grain-boundary engineering is an effective strategy to tune the thermal conductivity of materials, leading to improved performance in thermoelectric, thermal-barrier coatings, and thermal management applications. Despite the central importance to thermal transport, a clear understanding of how grain boundaries modulate the microscale heat flow is missing, owing to the scarcity of local investigations. Here, thermal imaging of individual grain boundaries is demonstrated in thermoelectric SnTe via spatially resolved frequency-domain thermoreflectance. Measurements with microscale resolution reveal local suppressions in thermal conductivity at grain boundaries. Also, the grain-boundary thermal resistance - extracted by employing a Gibbs excess approach - is found to be correlated with the grain-boundary misorientation angle. Extracting thermal properties, including thermal boundary resistances, from microscale imaging can provide comprehensive understanding of how microstructure affects heat transport, crucially impacting the materials design of high-performance thermal-management and energy-conversion devices.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure [J].
Bishara, Hanna ;
Lee, Subin ;
Brink, Tobias ;
Ghidelli, Matteo ;
Dehm, Gerhard .
ACS NANO, 2021, 15 (10) :16607-16615
[2]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[3]   Measuring thermoelectric transport properties of materials [J].
Borup, Kasper A. ;
de Boor, Johannes ;
Wang, Heng ;
Drymiotis, Fivos ;
Gascoin, Franck ;
Shi, Xun ;
Chen, Lidong ;
Fedorov, Mikhail I. ;
Mueller, Eckhard ;
Iversena, Bo B. ;
Snyder, G. Jeffrey .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (02) :423-435
[4]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[5]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[6]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[7]   Grain boundary complexions [J].
Cantwell, Patrick R. ;
Tang, Ming ;
Dillon, Shen J. ;
Luo, Jian ;
Rohrer, Gregory S. ;
Harmer, Martin P. .
ACTA MATERIALIA, 2014, 62 :1-48
[8]   Emerging theory and phenomena in thermal conduction: A selective review [J].
Chen, Jie ;
He, Jia ;
Pan, Dongkai ;
Wang, Xiaotian ;
Yang, Nuo ;
Zhu, Jiaojiao ;
Yang, Shengyuan A. ;
Zhang, Gang .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (11)
[9]   Mechanical alloying boosted SnTe thermoelectrics [J].
Chen, Zhiyu ;
Sun, Qiang ;
Zhang, Fujie ;
Mao, Jianjun ;
Chen, Yue ;
Li, Meng ;
Chen, Zhi-Gang ;
Ang, Ran .
MATERIALS TODAY PHYSICS, 2021, 17
[10]   Routes for advancing SnTe thermoelectrics [J].
Chen, Zhiyu ;
Guo, Xuming ;
Zhang, Fujie ;
Shi, Qing ;
Tang, Mingjing ;
Ang, Ran .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (33) :16790-16813