Application of Artificial Intelligence in the Early Detection of Retinopathy of Prematurity: Review of the Literature

被引:7
作者
Shah, Shivani [1 ]
Slaney, Elizabeth [1 ]
VerHage, Erik [2 ]
Chen, Jinghua [3 ]
Dias, Raquel [4 ]
Abdelmalik, Bishoy [1 ]
Weaver, Alex [1 ]
Neu, Josef [2 ]
机构
[1] Univ Florida, Coll Med, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Pediat, Gainesville, FL USA
[3] Univ Florida, Dept Ophthalmol, Gainesville, FL USA
[4] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL USA
关键词
Artificial intelligence; Retinopathy of prematurity; BURDEN;
D O I
10.1159/000531441
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Retinopathy of prematurity (ROP) is a potentially blinding disease in premature neonates that requires a skilled workforce for diagnosis, monitoring, and treatment. Artificial intelligence is a valuable tool that clinicians employ to reduce the screening burden on ophthalmologists and neonatologists and improve the detection of treatment-requiring ROP. Neural networks such as convolutional neural networks and deep learning (DL) systems are used to calculate a vascular severity score (VSS), an important component of various risk models. These DL systems have been validated in various studies, which are reviewed here. Most importantly, we discuss a promising study that validated a DL system that could predict the development of ROP despite a lack of clinical evidence of disease on the first retinal examination. Additionally, there is promise in utilizing these systems through telemedicine in more rural and resource-limited areas. This review highlights the value of these DL systems in early ROP diagnosis.
引用
收藏
页码:558 / 565
页数:8
相关论文
共 36 条
[1]   Can we reduce the burden of the current UK guidelines for retinopathy of prematurity screening? [J].
Adams, G. G. W. ;
Williams, C. ;
Modi, N. ;
Xing, W. ;
Bunce, C. ;
Dahlmann-Noor, A. .
EYE, 2018, 32 (02) :235-237
[2]   NeOProM: Neonatal Oxygenation Prospective Meta-analysis Collaboration study protocol [J].
Askie, Lisa M. ;
Brocklehurst, Peter ;
Darlow, Brian A. ;
Finer, Neil ;
Schmidt, Barbara ;
Tarnow-Mordi, William .
BMC PEDIATRICS, 2011, 11
[3]   Incidence, risk factors and severity of retinopathy of prematurity in Turkey (TR-ROP study): a prospective, multicentre study in 69 neonatal intensive care units [J].
Bas, Ahmet Yagmur ;
Demirel, Nihal ;
Koc, Esin ;
Isik, Dilek Ulubas ;
Hirfanoglu, Ibrahim Murat ;
Tunc, Turan ;
Sari, Fatma Nur ;
Karatekin, Guner ;
Koklu, Esad ;
Altunhan, Huseyin ;
Turgut, Hatice ;
Narter, Fatma ;
Tarakci, Nuriye ;
Tekgunduz, Kadir Serafettin ;
Ozkiraz, Servet ;
Aydemir, Cumhur ;
Ozdemir, Ahmet ;
Cetinkaya, Bilin ;
Kazanci, Ebru ;
Tastekin, Ayhan ;
Calkavur, Sebnem ;
Ozyurt, Banu Mutlu ;
Demirelli, Yasar ;
Asker, Huseyin Selim ;
Mutlu, Birgul ;
Uygur, Ozgun ;
Ozkan, Hilal ;
Armangil, Didem ;
Ozlu, Ferda ;
Mert, Mustafa Kurthan ;
Ergin, Hacer ;
Ozcan, Beyza ;
Bas, Evrim Kiray ;
Okulu, Emel ;
Acunas, Betul ;
Celik, Ulker ;
Uslu, Sait Ilker ;
Mutlu, Mehmet ;
Demir, Nihat ;
Eroglu, Funda ;
Gokmen, Zeynel ;
Beken, Serdar ;
Bayraktar, Bilge Tanyeri ;
Hakan, Nilay ;
Kucuktasci, Kazim ;
Orman, Aysen ;
Comert, Serdar ;
Ertugrul, Sabahattin ;
Ustun, Nuran ;
Sahin, Ozlem .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2018, 102 (12) :1711-1716
[4]   Artificial Intelligence for Retinopathy of Prematurity Validation of a Vascular Severity Scale against International Expert Diagnosis [J].
Campbell, J. Peter ;
Chiang, Michael F. ;
Chen, Jimmy S. ;
Moshfeghi, Darius M. ;
Nudleman, Eric ;
Ruambivoonsuk, Paisan ;
Cherwek, Hunter ;
Cheung, Carol Y. ;
Singh, Praveer ;
Kalpathy-Cramer, Jayashree ;
Ostmo, Susan ;
Eydelman, Malvina ;
Chan, R. V. Paul ;
Capone, Antonio, Jr. .
OPHTHALMOLOGY, 2022, 129 (07) :E69-E76
[5]   Applications of Artificial Intelligence for Retinopathy of Prematurity Screening [J].
Campbell, J. Peter ;
Singh, Praveer ;
Redd, Travis K. ;
Brown, James M. ;
Shah, Parag K. ;
Subramanian, Prema ;
Rajan, Renu ;
Valikodath, Nita ;
Cole, Emily ;
Ostmo, Susan ;
Chan, R. V. Paul ;
Venkatapathy, Narendran ;
Chiang, Michael F. ;
Kalpathy-Cramer, Jayashree .
PEDIATRICS, 2021, 147 (03)
[6]   Evaluation of a Deep Learning-Derived Quantitative Retinopathy of Prematurity Severity Scale [J].
Campbell, J. Peter ;
Kim, Sang Jin ;
Brown, James M. ;
Ostmo, Susan ;
Chan, R. V. Paul ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. .
OPHTHALMOLOGY, 2021, 128 (07) :1070-1076
[7]   Risk Calculator for Retinopathy of Prematurity Requiring Treatment [J].
Chaves-Samaniego, Maria J. ;
Garcia Castejon, Mar ;
Chaves-Samaniego, Maria C. ;
Solans Perez Larraya, Ana ;
Ortega Molina, Jose Maria ;
Munoz Hoyos, Antonio ;
Garcia-Serrano, Jose L. .
FRONTIERS IN PEDIATRICS, 2020, 8
[8]   External Validation of a Retinopathy of Prematurity Screening Model Using Artificial Intelligence in 3 Low- and Middle-Income Populations [J].
Coyner, Aaron S. ;
Oh, Minn A. ;
Shah, Parag K. ;
Singh, Praveer ;
Ostmo, Susan ;
Valikodath, Nita G. ;
Cole, Emily ;
Al-Khaled, Tala ;
Bajimaya, Sanyam ;
Sagun, K. C. ;
Chuluunbat, Tsengelmaa ;
Munkhuu, Bayalag ;
Subramanian, Prema ;
Venkatapathy, Narendran ;
Jonas, Karyn E. ;
Hallak, Joelle A. ;
Chan, R. V. Paul ;
Chiang, Michael F. ;
Kalpathy-Cramer, Jayashree ;
Campbell, J. Peter .
JAMA OPHTHALMOLOGY, 2022, 140 (08) :791-798
[9]   Single-Examination Risk Prediction of Severe Retinopathy of Prematurity [J].
Coyner, Aaron S. ;
Chen, Jimmy S. ;
Singh, Praveer ;
Schelonka, Robert L. ;
Jordan, Brian K. ;
McEvoy, Cindy T. ;
Anderson, Jamie E. ;
Chan, R. V. Paul ;
Sonmez, Kemal ;
Erdogmus, Deniz ;
Chiang, Michael F. ;
Kalpathy-Cramer, Jayashree ;
Campbell, J. Peter .
PEDIATRICS, 2021, 148 (06)
[10]   Insights into the growing popularity of artificial intelligence in ophthalmology [J].
Dutt, Sreetama ;
Sivaraman, Anand ;
Savoy, Florian ;
Rajalakshmi, Ramachandran .
INDIAN JOURNAL OF OPHTHALMOLOGY, 2020, 68 (07) :1339-+