Coherent heteroepitaxial growth of I-III-VI2 Ag(In,Ga)S2 colloidal nanocrystals with near-unity quantum yield for use in luminescent solar concentrators

被引:59
作者
Lee, Hak June [1 ,2 ]
Im, Seongbin [1 ]
Jung, Dongju [1 ]
Kim, Kyuri [1 ]
Chae, Jong Ah [1 ]
Lim, Jaemin [1 ]
Park, Jeong Woo [1 ]
Shin, Doyoon [1 ]
Char, Kookheon [2 ]
Jeong, Byeong Guk [3 ]
Park, Ji-Sang [1 ]
Hwang, Euyheon [1 ]
Lee, Doh C. [4 ]
Park, Young-Shin [5 ]
Song, Hyung-Jun [6 ]
Chang, Jun Hyuk [7 ,8 ]
Bae, Wan Ki [1 ]
机构
[1] Sungkyunkwan Univ SKKU, SKKU Adv Inst Nanotechnol SAINT, Suwon 16419, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 08826, South Korea
[3] Pusan Natl Univ, Sch Chem & Biomol Engn, Pusan 46241, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, KAIST Inst Nanocentury, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[5] Chem Div, Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[6] Seoul Natl Univ Sci & Technol, Dept Safety Engn, Seoul 01811, South Korea
[7] Univ Chicago, James Franck Inst, Dept Chem, Chicago, IL 60637 USA
[8] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
基金
新加坡国家研究基金会;
关键词
LIGHT-EMITTING-DIODES; DOTS; PERFORMANCE; DESIGN; PHOTOLUMINESCENCE; BLINKING; BRIGHT;
D O I
10.1038/s41467-023-39509-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colloidal semiconductor core-shell nanocrystals are sought after for photonic applications. Here, the authors report coherent heteroepitaxial growth of Ag(In,Ga)S-2 core-shell nanocrystals with near-unity photoluminescence quantum yield across almost the full visible range. Colloidal Ag(In,Ga)S-2 nanocrystals (AIGS NCs) with the band gap tunability by their size and composition within visible range have garnered surging interest. High absorption cross-section and narrow emission linewidth of AIGS NCs make them ideally suited to address the challenges of Cd-free NCs in wide-ranging photonic applications. However, AIGS NCs have shown relatively underwhelming photoluminescence quantum yield (PL QY) to date, primarily because coherent heteroepitaxy has not been realized. Here, we report the heteroepitaxy for AIGS-AgGaS2 (AIGS-AGS) core-shell NCs bearing near-unity PL QYs in almost full visible range (460 to 620 nm) and enhanced photochemical stability. Key to the successful growth of AIGS-AGS NCs is the use of the Ag-S-Ga(OA)(2) complex, which complements the reactivities among cations for both homogeneous AIGS cores in various compositions and uniform AGS shell growth. The heteroepitaxy between AIGS and AGS results in the Type I heterojunction that effectively confines charge carriers within the emissive core without optically active interfacial defects. AIGS-AGS NCs show higher extinction coefficient and narrower spectral linewidth compared to state-of-the-art heavy metal-free NCs, prompting their immediate use in practicable applications including displays and luminescent solar concentrators (LSCs).
引用
收藏
页数:11
相关论文
共 58 条
[1]   Highly Efficient Cd-Free Alloyed Core/Shell Quantum Dots with Optimized Precursor Concentrations [J].
Altintas, Yemliha ;
Talpur, Mohammad Younis ;
Unlu, Miray ;
Mutlugun, Evren .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (14) :7885-7892
[2]   High-Performance CuInS2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows [J].
Bergren, Matthew R. ;
Makarov, Nikolay S. ;
Ramasamy, Karthik ;
Jackson, Aaron ;
Gughelmetti, Rob ;
McDaniel, Hunter .
ACS ENERGY LETTERS, 2018, 3 (03) :520-525
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   The solar noise barrier project 4: Modeling of full-scale luminescent solar concentrator noise barrier panels [J].
Bognar, Adam ;
Kusnadi, Suryadi ;
Slooff, Lenneke H. ;
Tzikas, Chris ;
Loonen, Roel C. G. M. ;
de Jong, Minne M. ;
Hensen, Jan L. M. ;
Debije, Michael G. .
RENEWABLE ENERGY, 2020, 151 :1141-1149
[6]   Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells [J].
Chang, Jun Hyuk ;
Lee, Hak June ;
Rhee, Seunghyun ;
Hahm, Donghyo ;
Jeong, Byeong Guk ;
Nagamine, Gabriel ;
Padilha, Lazaro A. ;
Char, Kookheon ;
Hwang, Euyheon ;
Bae, Wan Ki .
ENERGY MATERIAL ADVANCES, 2021, 2021
[7]   High-performance crosslinked colloidal quantum-dot light-emitting diodes [J].
Cho, Kyung-Sang ;
Lee, Eun Kyung ;
Joo, Won-Jae ;
Jang, Eunjoo ;
Kim, Tae-Ho ;
Lee, Sang Jin ;
Kwon, Soon-Jae ;
Han, Jai Yong ;
Kim, Byung-Ki ;
Choi, Byoung Lyong ;
Kim, Jong Min .
NATURE PHOTONICS, 2009, 3 (06) :341-345
[8]   Renal clearance of quantum dots [J].
Choi, Hak Soo ;
Liu, Wenhao ;
Misra, Preeti ;
Tanaka, Eiichi ;
Zimmer, John P. ;
Ipe, Binil Itty ;
Bawendi, Moungi G. ;
Frangioni, John V. .
NATURE BIOTECHNOLOGY, 2007, 25 (10) :1165-1170
[9]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[10]   Suppression of Auger Processes in Confined Structures [J].
Cragg, George E. ;
Efros, Alexander L. .
NANO LETTERS, 2010, 10 (01) :313-317