Magnetic Continuum Robot with Intraoperative Magnetic Moment Programming

被引:18
作者
Cao, Yanfei [1 ]
Yang, Zhengxin [1 ,2 ]
Hao, Bo [1 ]
Wang, Xin [1 ]
Cai, Mingxue [1 ]
Qi, Zhaoyang [1 ]
Sun, Bonan [1 ]
Wang, Qinglong [1 ]
Zhang, Li [1 ,3 ,4 ,5 ,6 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou, Peoples R China
[3] Chinese Univ Hong Kong, Chow Yuk Ho Technol Ctr Innovat Med, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, CUHK T Stone Robot Inst, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Dept Surg, Hong Kong, Peoples R China
[6] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong 999077, Peoples R China
关键词
continuum robot; magnetic actuation; soft robot; magnetic moment programming; SOFT;
D O I
10.1089/soro.2022.0202
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Magnetic continuum robots (MCRs), which are free of complicated structural designs for transmission, can be miniaturized and are therefore widely used in the medical field. However, the deformation shapes of different segments, including deflection directions and curvatures, are difficult to control simultaneously under an external programmable magnetic field. This is because the latest MCRs have designs with an invariable magnetic moment combination or profile of one or more actuating units. Therefore, the limited dexterity of the deformation shape causes the existing MCRs to collide readily with their surroundings or makes them unable to approach difficult-to-reach regions. These prolonged collisions are unnecessary or even hazardous, especially for catheters or similar medical devices. In this study, a novel magnetic moment intraoperatively programmable continuum robot (MMPCR) is introduced. By applying the proposed magnetic moment programming method, the MMPCR can deform under three modalities, that is, J, C, and S shapes. Additionally, the deflection directions and curvatures of different segments in the MMPCR can be modulated as desired. Furthermore, the magnetic moment programming and MMPCR kinematics are modeled, numerically simulated, and experimentally validated. The experimental results exhibit a mean deflection angle error of 3.3 & DEG; and correspond well with simulation results. Comparisons between navigation capacities of the MMPCR and MCR demonstrate that the MMPCR has a higher capacity for dexterous deformation.
引用
收藏
页码:1209 / 1223
页数:15
相关论文
共 49 条
[1]   Continuum Robots for Medical Applications: A Survey [J].
Burgner-Kahrs, Jessica ;
Rucker, D. Caleb ;
Choset, Howie .
IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (06) :1261-1280
[2]   Magnetic Continuum Device with Variable Stiffness for Minimally Invasive Surgery [J].
Chautems, Christophe ;
Tonazzini, Alice ;
Boehler, Quentin ;
Jeong, Seung Hee ;
Floreano, Dario ;
Nelson, Bradley J. .
ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (06)
[3]  
Chitalia Y, 2019, IEEE INT C INT ROBOT, P2998, DOI [10.1109/IROS40897.2019.8968186, 10.1109/iros40897.2019.8968186]
[4]   Challenges of continuum robots in clinical context: a review [J].
da Veiga, Tomas ;
Chandler, James H. ;
Lloyd, Peter ;
Pittiglio, Giovanni ;
Wilkinson, Nathan J. ;
Hoshiar, Ali K. ;
Harris, Russell A. ;
Valdastri, Pietro .
PROGRESS IN BIOMEDICAL ENGINEERING, 2020, 2 (03)
[5]   Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules [J].
Dong, Yue ;
Wang, Lu ;
Xia, Neng ;
Yang, Zhengxin ;
Zhang, Chong ;
Pan, Chengfeng ;
Jin, Dongdong ;
Zhang, Jiachen ;
Majidi, Carmel ;
Zhang, Li .
SCIENCE ADVANCES, 2022, 8 (25)
[6]   Shape Tracking and Feedback Control of Cardiac Catheter Using MRI-Guided Robotic Platform-Validation With Pulmonary Vein Isolation Simulator in MRI [J].
Dong, Ziyang ;
Wang, Xiaomei ;
Fang, Ge ;
He, Zhuoliang ;
Ho, Justin Di-Lang ;
Cheung, Chim-Lee ;
Tang, Wai Lun ;
Xie, Xiaochen ;
Liang, Liyuan ;
Chang, Hing-Chiu ;
Ching, Chi Keong ;
Kwok, Ka-Wai .
IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (05) :2781-2798
[7]   A decade retrospective of medical robotics research from 2010 to 2020 [J].
Dupont, Pierre E. ;
Nelson, Bradley J. ;
Goldfarb, Michael ;
Hannaford, Blake ;
Menciassi, Arianna ;
O'Malley, Marcia K. ;
Simaan, Nabil ;
Valdastri, Pietro ;
Yang, Guang-Zhong .
SCIENCE ROBOTICS, 2021, 6 (60)
[8]   Magnetic control of continuum devices [J].
Edelmann, Janis ;
Petruska, Andrew J. ;
Nelson, Bradley J. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (01) :68-85
[9]   Progress in robotics for combating infectious diseases [J].
Gao, Anzhu ;
Murphy, Robin R. ;
Chen, Weidong ;
Dagnino, Giulio ;
Fischer, Peer ;
Gutierrez, Maximiliano G. ;
Kundrat, Dennis ;
Nelson, Bradley J. ;
Shamsudhin, Naveen ;
Su, Hao ;
Xia, Jingen ;
Zemmar, Ajmal ;
Zhang, Dandan ;
Wang, Chen ;
Yang, Guang-Zhong .
SCIENCE ROBOTICS, 2021, 6 (52)
[10]   Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning [J].
Giannaccini M.E. ;
Xiang C. ;
Atyabi A. ;
Theodoridis T. ;
Nefti-Meziani S. ;
Davis S. .
Giannaccini, Maria Elena (maria.elena.giannaccini@brl.ac.uk), 2018, Mary Ann Liebert Inc. (05) :54-70