Measure of non-compactness for nonlocal boundary value problems via (k, ?)-Riemann-Liouville derivative on unbounded domain

被引:2
作者
Aphithana, Aphirak [1 ]
Sudsutad, Weerawat [2 ]
Kongson, Jutarat [3 ]
Thaiprayoon, Chatthai [3 ]
机构
[1] Suvarnabhumi Inst Technol, Fac Engn Sci & Technol, Samut Prakan 10540, Thailand
[2] Ramkhamhang Univ, Fac Sci, Dept Stat, Theoret & Appl Data Integrat Innovat Grp, Bangkok 10240, Thailand
[3] Burapha Univ, Fac Sci, Dept Math, Res Grp Theoret & Computat Appl Sci, Chon Buri 20131, Thailand
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
关键词
boundary value problem; fixed point theorem; (k; )-Riemann-Liouville fractional derivative; measure of noncompactness; Meir-Keeler condensing operators; FRACTIONAL DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.3934/math.20231020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence result for (k, ?)-Riemann-Liouville fractional differential equations via nonlocal conditions on unbounded domain. The main result is proved by applying a fixed-point theorem for Meir-Keeler condensing operators with a measure of noncompactness. Finally, two numerical examples are also demonstrated to confirm the usefulness and applicability of our theoretical results.
引用
收藏
页码:20018 / 20047
页数:30
相关论文
共 47 条
  • [1] EXISTENCE AND ATTRACTIVITY OF k-ALMOST AUTOMORPHIC SEQUENCE SOLUTION OF A MODEL OF CELLULAR NEURAL NETWORKS WITH DELAY
    Abbas, Syed
    Xia, Yonghui
    [J]. ACTA MATHEMATICA SCIENTIA, 2013, 33 (01) : 290 - 302
  • [2] Agarwal R.P., 2011, Dynamics of Continuous, V18, P235
  • [3] FIXED POINT THEOREMS FOR MEIR-KEELER CONDENSING OPERATORS VIA MEASURE OF NONCOMPACTNESS
    Aghajani, A.
    Mursaleen, M.
    Haghighi, A. Shole
    [J]. ACTA MATHEMATICA SCIENTIA, 2015, 35 (03) : 552 - 566
  • [4] Hilfer-Hadamard Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [5] Almalahi MA, 2021, REND CIRC MAT PALERM, V70, P57, DOI 10.1007/s12215-020-00484-8
  • [6] Fractional order differential equations on an unbounded domain
    Arara, A.
    Benchohra, M.
    Hamidi, N.
    Nieto, J. J.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 580 - 586
  • [7] Baleanu D., 2012, FRACTIONAL DYNAMICS, DOI 10.1007/978-1-4614-0457-6
  • [8] On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations
    Baleanu, Dumitru
    Mousalou, Asef
    Rezapour, Shahram
    [J]. BOUNDARY VALUE PROBLEMS, 2017,
  • [9] Banas J., 2014, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations
  • [10] Banas J., 1980, MEASURES NONCOMPACTN