Machine learning approach to predict body weight in adults

被引:5
作者
Fujihara, Kazuya [1 ]
Harada, Mayuko Yamada [1 ]
Horikawa, Chika [2 ]
Iwanaga, Midori [1 ]
Tanaka, Hirofumi [3 ]
Nomura, Hitoshi [3 ]
Sui, Yasuharu [3 ]
Tanabe, Kyouhei [3 ]
Yamada, Takaho [1 ]
Kodama, Satoru [1 ]
Kato, Kiminori [4 ]
Sone, Hirohito [1 ]
机构
[1] Niigata Univ, Fac Med, Dept Endocrinol & Metab, Niigata, Japan
[2] Univ Niigata Prefecture, Fac Human Life Studies, Dept Hlth & Nutr, Niigata, Japan
[3] NEC Solut Innovators Ltd, Tokyo, Japan
[4] Niigata Univ, Dept Prevent Noncommunicable Dis & Promot Hlth Che, Niigata, Japan
关键词
body weight; prediction; machine learning model; heterogeneous mixture learning technology; body mass index; TYPE-2; DIABETES-MELLITUS; LIFE-STYLE INTERVENTION; OVERWEIGHT; RISK; PREVENTION; OBESITY; CANCER; CARE;
D O I
10.3389/fpubh.2023.1090146
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
BackgroundObesity is an established risk factor for non-communicable diseases such as type 2 diabetes mellitus, hypertension and cardiovascular disease. Thus, weight control is a key factor in the prevention of non-communicable diseases. A simple and quick method to predict weight change over a few years could be helpful for weight management in clinical settings. MethodsWe examined the ability of a machine learning model that we constructed to predict changes in future body weight over 3 years using big data. Input in the machine learning model were three-year data on 50,000 Japanese persons (32,977 men) aged 19-91 years who underwent annual health examinations. The predictive formulas that used heterogeneous mixture learning technology (HMLT) to predict body weight in the subsequent 3 years were validated for 5,000 persons. The root mean square error (RMSE) was used to evaluate accuracy compared with multiple regression. ResultsThe machine learning model utilizing HMLT automatically generated five predictive formulas. The influence of lifestyle on body weight was found to be large in people with a high body mass index (BMI) at baseline (BMI & GE;29.93 kg/m(2)) and in young people (<24 years) with a low BMI (BMI <23.44 kg/m(2)). The RMSE was 1.914 in the validation set which reflects ability comparable to that of the multiple regression model of 1.890 (p = 0.323). ConclusionThe HMLT-based machine learning model could successfully predict weight change over 3 years. Our model could automatically identify groups whose lifestyle profoundly impacted weight loss and factors the influenced body weight change in individuals. Although this model must be validated in other populations, including other ethnic groups, before being widely implemented in global clinical settings, results suggested that this machine learning model could contribute to individualized weight management.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Artificial Intelligence Applications in Type 2 Diabetes Mellitus Care: Focus on Machine Learning Methods [J].
Abhari, Shahabeddin ;
Kalhori, Sharareh R. Niakan ;
Ebrahimi, Mehdi ;
Hasannejadasl, Hajar ;
Garavand, Ali .
HEALTHCARE INFORMATICS RESEARCH, 2019, 25 (04) :248-261
[2]   Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes-2019 [J].
Cefalu, William T. ;
Berg, Erika Gebel ;
Saraco, Mindy ;
Petersen, Matthew P. ;
Uelmen, Sacha ;
Robinson, Shamera .
DIABETES CARE, 2019, 42 :S81-S89
[3]  
[Anonymous], 2012, P 29 INT C MACH LEAR
[4]  
[Anonymous], 2012, AISTATS
[5]  
Arnett DK, 2019, CIRCULATION, V140, pE596, DOI [10.1016/j.jacc.2019.03.009, 10.1161/CIR.0000000000000678, 10.1161/CIR.0000000000000677, 10.1016/j.jacc.2019.03.010]
[6]   Screening and brief intervention for obesity in primary care: a parallel, two-arm, randomised trial [J].
Aveyard, Paul ;
Lewis, Amanda ;
Tearne, Sarah ;
Hood, Kathryn ;
Christian-Brown, Anna ;
Adab, Peymane ;
Begh, Rachna ;
Jolly, Kate ;
Daley, Amanda ;
Farley, Amanda ;
Lycett, Deborah ;
Nickless, Alecia ;
Yu, Ly-Mee ;
Retat, Lise ;
Webber, Laura ;
Pimpin, Laura ;
Jebb, Susan A. .
LANCET, 2016, 388 (10059) :2492-2500
[7]   10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study [J].
Bray, G. A. ;
Chatellier, A. ;
Duncan, C. ;
Greenway, F. L. ;
Levy, E. ;
Ryan, D. H. ;
Polonsky, K. S. ;
Tobian, J. ;
Ehrmann, D. ;
Matulik, M. J. ;
Clark, B. ;
Czech, K. ;
DeSandre, C. ;
Hilbrich, R. ;
McNabb, W. ;
Semenske, A. R. ;
Goldstein, B. J. ;
Smith, K. A. ;
Wildman, W. ;
Pepe, C. ;
Goldberg, R. B. ;
Calles, J. ;
Ojito, J. ;
Castillo-Florez, S. ;
Florez, H. J. ;
Giannella, A. ;
Lara, O. ;
Veciana, B. ;
Haffner, S. M. ;
Montez, M. G. ;
Lorenzo, C. ;
Martinez, A. ;
Hamman, R. F. ;
Testaverde, L. ;
Bouffard, A. ;
Dabelea, D. ;
Jenkins, T. ;
Lenz, D. ;
Perreault, L. ;
Price, D. W. ;
Steinke, S. C. ;
Horton, E. S. ;
Poirier, C. S. ;
Swift, K. ;
Caballero, E. ;
Jackson, S. D. ;
Lambert, L. ;
Lawton, K. E. ;
Ledbury, S. ;
Kahn, S. E. .
LANCET, 2009, 374 (9702) :1677-1686
[8]   Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks [J].
Burt, Jeremy R. ;
Torosdagli, Neslisah ;
Khosravan, Naji ;
Raviprakash, Harish ;
Mortazi, Aliasghar ;
Tissavirasingham, Fiona ;
Hussein, Sarfaraz ;
Bagci, Ulas .
BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1089)
[9]   Unintended Consequences of Machine Learning in Medicine [J].
Cabitza, Federico ;
Rasoini, Raffaele ;
Gensini, Gian Franco .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (06) :517-518
[10]   Artificial Intelligence for Diabetes Management and Decision Support: Literature Review [J].
Contreras, Ivan ;
Vehi, Josep .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2018, 20 (05)