STING agonist-loaded, CD47/PD-L1-targeting nanoparticles potentiate antitumor immunity and radiotherapy for glioblastoma

被引:97
作者
Zhang, Peng [1 ]
Rashidi, Aida [1 ]
Zhao, Junfei [2 ,3 ]
Silvers, Caylee [1 ]
Wang, Hanxiang [1 ]
Castro, Brandyn [1 ]
Ellingwood, Abby [1 ]
Han, Yu [1 ]
Lopez-Rosas, Aurora [1 ]
Zannikou, Markella [1 ]
Dmello, Crismita [1 ]
Levine, Rebecca [1 ]
Xiao, Ting [1 ]
Cordero, Alex [1 ]
Sonabend, Adam M. [1 ]
Balyasnikova, Irina V. [1 ]
Lee-Chang, Catalina [1 ]
Miska, Jason [1 ]
Lesniak, Maciej S. [1 ]
机构
[1] Northwestern Univ, Lou & Jean Malnati Brain Tumor Inst, Feinberg Sch Med, Dept Neurol Surg, Chicago, IL 60208 USA
[2] Columbia Univ, Dept Syst Biol, Program Math Genom, New York, NY USA
[3] Columbia Univ, Dept Biomed Informat, New York, NY USA
基金
美国国家卫生研究院;
关键词
T-CELLS; MICROENVIRONMENTAL LANDSCAPE; TUMOR MICROENVIRONMENT; ADJUVANT TEMOZOLOMIDE; REGULATORY NETWORK; PRONEURAL GLIOMA; MYELOID CELLS; BRAIN; ACTIVATION; DELIVERY;
D O I
10.1038/s41467-023-37328-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As a key component of the standard of care for glioblastoma, radiotherapy induces several immune resistance mechanisms, such as upregulation of CD47 and PD-L1. Here, leveraging these radiotherapy-elicited processes, we generate a bridging-lipid nanoparticle (B-LNP) that engages tumor-associated myeloid cells (TAMCs) to glioblastoma cells via anti-CD47/PD-L1 dual ligation. We show that the engager B-LNPs block CD47 and PD-L1 and promote TAMC phagocytic activity. To enhance subsequent T cell recruitment and antitumor responses after tumor engulfment, the B-LNP was encapsulated with diABZI, a non-nucleotidyl agonist for stimulator of interferon genes. In vivo treatment with diABZI-loaded B-LNPs induced a transcriptomic and metabolic switch in TAMCs, turning these immunosuppressive cells into antitumor effectors, which induced T cell infiltration and activation in brain tumors. In preclinical murine models, B-LNP/diABZI administration synergized with radiotherapy to promote brain tumor regression and induce immunological memory against glioma. In summary, our study describes a nanotechnology-based approach that hijacks irradiation-triggered immune checkpoint molecules to boost potent and long-lasting antitumor immunity against glioblastoma. Glioblastoma is an immunologically cold tumour, with poor CD8 + T cell infiltration and enrichment in immunosuppressive tumour-associated myeloid cells. Here, the authors generate a bispecific lipid nanoparticle targeting CD47 and PD-L1, combined with a STING agonist, to promote anti-tumour immunity.
引用
收藏
页数:19
相关论文
共 57 条
[11]   Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes [J].
Cerboni, Silvia ;
Jeremiah, Nadia ;
Gentili, Matteo ;
Gehrmann, Ulf ;
Conrad, Cecile ;
Stolzenberg, Marie-Claude ;
Picard, Capucine ;
Neven, Benedicte ;
Fischer, Alain ;
Amigorena, Sebastian ;
Rieux-Laucat, Frederic ;
Manel, Nicolas .
JOURNAL OF EXPERIMENTAL MEDICINE, 2017, 214 (06) :1769-1785
[12]   CCL2 Produced by the Glioma Microenvironment Is Essential for the Recruitment of Regulatory T Cells and Myeloid-Derived Suppressor Cells [J].
Chang, Alan L. ;
Miska, Jason ;
Wainwright, Derek A. ;
Dey, Mahua ;
Rivetta, Claudia V. ;
Yu, Dou ;
Kanojia, Deepak ;
Pituch, Katarzyna C. ;
Qiao, Jian ;
Pytel, Peter ;
Han, Yu ;
Wu, Meijing ;
Zhang, Lingjiao ;
Horbinski, Craig M. ;
Ahmed, Atique U. ;
Lesniak, Maciej S. .
CANCER RESEARCH, 2016, 76 (19) :5671-5682
[13]   Calreticulin Is the Dominant Pro-Phagocytic Signal on Multiple Human Cancers and Is Counterbalanced by CD47 [J].
Chao, Mark P. ;
Jaiswal, Siddhartha ;
Weissman-Tsukamoto, Rachel ;
Alizadeh, Ash A. ;
Gentles, Andrew J. ;
Volkmer, Jens ;
Weiskopf, Kipp ;
Willingham, Stephen B. ;
Raveh, Tal ;
Park, Christopher Y. ;
Majeti, Ravindra ;
Weissman, Irving L. .
SCIENCE TRANSLATIONAL MEDICINE, 2010, 2 (63)
[14]   Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity [J].
Corrales, Leticia ;
Glickman, Laura Hix ;
McWhirter, Sarah M. ;
Kanne, David B. ;
Sivick, Kelsey E. ;
Katibah, George E. ;
Woo, Seng-Ryong ;
Lemmens, Edward ;
Banda, Tamara ;
Leong, Justin J. ;
Metchette, Ken ;
Dubensky, Thomas W., Jr. ;
Gajewski, Thomas F. .
CELL REPORTS, 2015, 11 (07) :1018-1030
[15]   Convection-enhanced drug delivery for glioblastoma: a review [J].
D'Amico, Randy S. ;
Aghi, Manish K. ;
Vogelbaum, Michael A. ;
Bruce, Jeffrey N. .
JOURNAL OF NEURO-ONCOLOGY, 2021, 151 (03) :415-427
[16]   Convection-enhanced delivery for the treatment of brain tumors [J].
Debinski, Waldemar ;
Tatter, Stephen B. .
EXPERT REVIEW OF NEUROTHERAPEUTICS, 2009, 9 (10) :1519-1527
[17]   Radiotherapy: Changing the Game in Immunotherapy [J].
Demaria, Sandra ;
Coleman, C. Norman ;
Formenti, Silvia C. .
TRENDS IN CANCER, 2016, 2 (06) :286-294
[18]   Cancer Cells Resistance Shaping by Tumor Infiltrating Myeloid Cells [J].
Domagala, Marcin ;
Laplagne, Chloe ;
Leveque, Edouard ;
Laurent, Camille ;
Fournie, Jean-Jacques ;
Espinosa, Eric ;
Poupot, Mary .
CANCERS, 2021, 13 (02) :1-30
[19]   The role of myeloid cells in cancer therapies [J].
Engblom, Camilla ;
Pfirschke, Christina ;
Pittet, Mikael J. .
NATURE REVIEWS CANCER, 2016, 16 (07) :447-462
[20]   Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: Multiplex quantification with path analysis [J].
Erickson, Michelle A. ;
Banks, William A. .
BRAIN BEHAVIOR AND IMMUNITY, 2011, 25 (08) :1637-1648