Enriched multi-scale cascade pyramid features and guided context attention network for industrial surface defect detection

被引:17
|
作者
Shao, Linhao [1 ]
Zhang, Erhu [1 ]
Duan, Jinghong [2 ]
Ma, Qiurui [3 ]
机构
[1] Xian Univ Technol, Dept Informat Sci, Xian 710048, Peoples R China
[2] Xian Univ Technol, Sch Comp Sci & Engn, Xian 710048, Peoples R China
[3] Xian Univ Technol, Sch Mech & Precis Instrument Engn, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
Surface defect detection; Deep learning; Pyramid feature fusion; Guided context attention; Attention mechanism; CLASSIFICATION;
D O I
10.1016/j.engappai.2023.106369
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Surface defect detection is a very important technique to guarantee product quality in industrial fields. However, the detection of multi-scale defects and defects with poor visibility is still a challenging problem. To address this issue, we propose a novel network by collaborating multi-scale cascade pyramid features and a guided context attention mechanism for the pixel-wise defection of surface defects, called MPA-Net. The MPA-Net is a full y-convolutional network (FCN) with an encoder-decoder architecture, which can integrate multi-scale features and merge them into the different stages of the decoder for generating the defect segmentation map. Specifically, the proposed guided context attention module (GCA) is used to transmit the global context information from the large scale to the small scale, which can promote the initial recovery capability of the decoder, and thus help to locate defects with different sizes and defects with poor visibility. Moreover, the proposed pyramid feature fusion and enrichment module (FFEM) is employed to aggregate low-level coarse features and high-level semantic features in each scale, so as to increase the ability of defect feature representation. The aggregation features at different scales are then fused to the different layers of the decoder, which is beneficial to recover the details of defects gradually. The evaluation results on four public datasets demonstrate that the proposed method has excellent performances on mean intersection of union (DAGM2007: 64.94%, KolektorSSD: 77.90%, RSDDs-I: 86.63%, RSDDs-II: 80.62%, FID: 96.98%) and mean pixel accuracy (DAGM2007: 67.97%, KolektorSSD: 85.01%, RSDDs-I: 94.13%, RSDDs-II: 88.53%, FID: 98.71%).
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multi-scale Fusion Attention Network for Industrial Surface Defect Classification
    Wu, Cong
    Lei, Sicheng
    Xu, Huawei
    Xing, Tongzhen
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 594 - 599
  • [2] An efficient multi-scale feature enhancement network for industrial surface defect detection
    Chen, Jiusheng
    Zha, Haoxiang
    Zhang, Xiaoyu
    Guo, Runxia
    Wu, Jun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
  • [3] Cascade-guided multi-scale attention network for crowd counting
    Shufang Li
    Zhengping Hu
    Mengyao Zhao
    Zhe Sun
    Signal, Image and Video Processing, 2021, 15 : 1663 - 1670
  • [4] Cascade-guided multi-scale attention network for crowd counting
    Li, Shufang
    Hu, Zhengping
    Zhao, Mengyao
    Sun, Zhe
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (08) : 1663 - 1670
  • [5] Pyramid attention object detection network with multi-scale feature fusion
    Chen, Xiu
    Li, Yujie
    Nakatoh, Yoshihisa
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [6] Group multi-scale attention pyramid network for traffic sign detection
    Shen, Lili
    You, Liang
    Peng, Bo
    Zhang, Chuhe
    NEUROCOMPUTING, 2021, 452 : 1 - 14
  • [7] Surface Defect Detection for Aerospace Aluminum Profiles with Attention Mechanism and Multi-Scale Features
    Feng, Yin-An
    Song, Wei-Wei
    ELECTRONICS, 2024, 13 (14)
  • [8] Multi-scale attention and dilation network for small defect detection *
    Xiang, Xinyuan
    Liu, Meiqin
    Zhang, Senlin
    Wei, Ping
    Chen, Badong
    PATTERN RECOGNITION LETTERS, 2023, 172 : 82 - 88
  • [9] Structure-Guided Image Inpainting Based on Multi-Scale Attention Pyramid Network
    Gong, Jun
    Luo, Senlin
    Yu, Wenxin
    Nie, Liang
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [10] MS-CSPN: MULTI-SCALE CASCADE SPATIAL PYRAMID NETWORK FOR OBJECT DETECTION
    Wang, Tianyuan
    Ma, Can
    Su, Haoshan
    Wang, Weiping
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1490 - 1494