Automated Patient-level Prostate Cancer Detection with Quantitative Diffusion Magnetic Resonance Imaging

被引:11
|
作者
Zhong, Allison Y. [1 ]
Digma, Leonardino A. [1 ]
Hussain, Troy [1 ]
Feng, Christine H. [1 ]
Conlin, Christopher C. [2 ]
Tye, Karen [1 ]
Lui, Asona J. [1 ]
Andreassen, Maren M. S. [3 ]
Rodriguez-Soto, Ana E. [2 ]
Karunamuni, Roshan [1 ]
Kuperman, Joshua [2 ]
Kane, Christopher J. [4 ]
Rakow-Penner, Rebecca [2 ]
Hahn, Michael E. [2 ]
Dale, Anders M. [2 ,5 ]
Seibert, Tyler M. [1 ,2 ,6 ,7 ]
机构
[1] Univ Calif San Diego, Dept Radiat Med & Appl Sci, La Jolla, CA USA
[2] Univ Calif San Diego, Dept Radiol, La Jolla, CA USA
[3] Norwegian Univ Sci & Technol, Dept Circulat & Med Imaging, Trondheim, Norway
[4] Univ Calif San Diego, Dept Urol, La Jolla, CA USA
[5] Univ Calif San Diego, Dept Neurosci, La Jolla, CA USA
[6] Univ Calif San Diego, Dept Bioengn, La Jolla, CA USA
[7] Univ Calif San Diego, Ctr Multimodal Imaging & Genet, Dept Radiat Med & Appl Sci, Dept Radiol,Dept Bioengn, 9500 Gilman Dr,Mail Code 0861, La Jolla, CA 92093 USA
来源
EUROPEAN UROLOGY OPEN SCIENCE | 2023年 / 47卷
基金
美国国家卫生研究院;
关键词
Cancer; Diffusion magnetic resonance; imaging; Prostate; Quantitative magnetic resonance; Restriction spectrum imaging; MRI;
D O I
10.1016/j.euros.2022.11.009
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: Multiparametric magnetic resonance imaging (mpMRI) improves detection of clinically significant prostate cancer (csPCa), but the subjective Prostate Imaging Reporting and Data System (PI-RADS) system and quantitative apparent diffusion coefficient (ADC) are inconsistent. Restriction spectrum imaging (RSI) is an advanced diffusion-weighted MRI technique that yields a quantitative imaging biomarker for csPCa called the RSI restriction score (RSIrs). Objective: To evaluate RSIrs for automated patient-level detection of csPCa. Design, setting, and participants: We retrospectively studied all patients (n = 151) who underwent 3 T mpMRI and RSI (a 2-min sequence on a clinical scanner) for suspected prostate cancer at University of California San Diego during 2017- 2019 and had prostate biopsy within 180 d of MRI. Intervention: We calculated the maximum RSIrs and minimum ADC within the pros-tate, and obtained PI-RADS v2.1 from medical records. Outcome measurements and statistical analysis: We compared the performance of RSIrs, ADC, and PI-RADS for the detection of csPCa (grade group >2) on the best available histopathology (biopsy or prostatectomy) using the area under the curve (AUC) with two-tailed a = 0.05. We also explored whether the combination of PI-RADS and RSIrs might be superior to PI-RADS alone and performed subset anal-yses within the peripheral and transition zones.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 50 条
  • [31] Magnetic resonance imaging detection of prostate cancer in men with previous negative prostate biopsy
    Truong, Matthew
    Frye, Thomas P.
    TRANSLATIONAL ANDROLOGY AND UROLOGY, 2017, 6 (03) : 424 - 431
  • [32] Evaluation of Multiparametric Magnetic Resonance Imaging in Detection and Prediction of Prostate Cancer
    Wang, Rui
    Wang, He
    Zhao, Chenglin
    Hu, Juan
    Jiang, Yuanyuan
    Tong, Yanjun
    Liu, Ting
    Huang, Rong
    Wang, Xiaoying
    PLOS ONE, 2015, 10 (06):
  • [33] The Value of Endorectal Magnetic Resonance Imaging of the Prostate in Improving the Detection of Anterior Prostate Cancer
    Zugor, Vahudin
    Kuehn, Reinhard
    Engelhard, Karl
    Poth, Sandor
    Bernat, Marija Maja
    Porres, Daniel
    Labanaris, Apostolos P.
    ANTICANCER RESEARCH, 2016, 36 (08) : 4279 - 4283
  • [34] A review on the role of water Diffusion modeling in Magnetic Resonance Imaging of Prostate cancer
    Barucci, Andrea
    Farnesi, Daniele
    Ratto, Fulvio
    Pini, Roberto
    Carpi, Roberto
    Esposito, Marco
    Olmastroni, Maristella
    Zatelli, Giovanna
    2018 IEEE WORKSHOP ON COMPLEXITY IN ENGINEERING (COMPENG 2018), 2018,
  • [35] Role of apparent diffusion coefficient values in prostate diseases characterization on diffusion-weighted magnetic resonance imaging
    Salvaggio, Giuseppe
    Calamia, Mauro
    Purpura, Pierpaolo
    Bartolotta, Tommaso V.
    Picone, Dario
    Dispensa, Nino
    Lunetta, Claudio
    Bruno, Alberto
    Raso, Ludovica
    Salvaggio, Leonardo
    Lo Re, Giuseppe
    Galia, Massimo
    Simonato, Alchiede
    Midiri, Massimo
    Lagalla, Roberto
    MINERVA UROLOGICA E NEFROLOGICA, 2019, 71 (02) : 154 - 160
  • [36] Precision of multiparametric Prostate Magnetic Resonance Imaging for the Detection of clinically significant Prostate Cancer
    Krafft, U.
    Borkowetz, A.
    UROLOGE, 2020, 59 (01): : 72 - 77
  • [37] Prostate Magnetic Resonance Imaging: Lesion Detection and Local Staging
    Turkbey, Baris
    Choyke, Peter L.
    ANNUAL REVIEW OF MEDICINE, VOL 70, 2019, 70 : 451 - 459
  • [38] The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection: a systematic review
    Gayet, Maudy
    van der Aa, Anouk
    Beerlage, Harrie P.
    Schrier, Bart Ph.
    Mulders, Peter F. A.
    Wijkstra, Hessel
    BJU INTERNATIONAL, 2016, 117 (03) : 392 - 400
  • [39] Assessing Bladder Radiotherapy Response With Quantitative Diffusion-Weighted Magnetic Resonance Imaging Analysis
    Hafeez, S.
    Koh, M.
    Jones, K.
    El Ghzal, A.
    D'Arcy, J.
    Kumar, P.
    Khoo, V
    Lalondrelle, S.
    McDonald, F.
    Thompson, A.
    Scurr, E.
    Sohaib, A.
    Huddart, R.
    CLINICAL ONCOLOGY, 2022, 34 (10) : 630 - 641
  • [40] Machine learning applications in prostate cancer magnetic resonance imaging
    Cuocolo, Renato
    Cipullo, Maria Brunella
    Stanzione, Arnaldo
    Ugga, Lorenzo
    Romeo, Valeria
    Radice, Leonardo
    Brunetti, Arturo
    Imbriaco, Massimo
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2019, 3 (01)