Automated Patient-level Prostate Cancer Detection with Quantitative Diffusion Magnetic Resonance Imaging

被引:11
|
作者
Zhong, Allison Y. [1 ]
Digma, Leonardino A. [1 ]
Hussain, Troy [1 ]
Feng, Christine H. [1 ]
Conlin, Christopher C. [2 ]
Tye, Karen [1 ]
Lui, Asona J. [1 ]
Andreassen, Maren M. S. [3 ]
Rodriguez-Soto, Ana E. [2 ]
Karunamuni, Roshan [1 ]
Kuperman, Joshua [2 ]
Kane, Christopher J. [4 ]
Rakow-Penner, Rebecca [2 ]
Hahn, Michael E. [2 ]
Dale, Anders M. [2 ,5 ]
Seibert, Tyler M. [1 ,2 ,6 ,7 ]
机构
[1] Univ Calif San Diego, Dept Radiat Med & Appl Sci, La Jolla, CA USA
[2] Univ Calif San Diego, Dept Radiol, La Jolla, CA USA
[3] Norwegian Univ Sci & Technol, Dept Circulat & Med Imaging, Trondheim, Norway
[4] Univ Calif San Diego, Dept Urol, La Jolla, CA USA
[5] Univ Calif San Diego, Dept Neurosci, La Jolla, CA USA
[6] Univ Calif San Diego, Dept Bioengn, La Jolla, CA USA
[7] Univ Calif San Diego, Ctr Multimodal Imaging & Genet, Dept Radiat Med & Appl Sci, Dept Radiol,Dept Bioengn, 9500 Gilman Dr,Mail Code 0861, La Jolla, CA 92093 USA
来源
EUROPEAN UROLOGY OPEN SCIENCE | 2023年 / 47卷
基金
美国国家卫生研究院;
关键词
Cancer; Diffusion magnetic resonance; imaging; Prostate; Quantitative magnetic resonance; Restriction spectrum imaging; MRI;
D O I
10.1016/j.euros.2022.11.009
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: Multiparametric magnetic resonance imaging (mpMRI) improves detection of clinically significant prostate cancer (csPCa), but the subjective Prostate Imaging Reporting and Data System (PI-RADS) system and quantitative apparent diffusion coefficient (ADC) are inconsistent. Restriction spectrum imaging (RSI) is an advanced diffusion-weighted MRI technique that yields a quantitative imaging biomarker for csPCa called the RSI restriction score (RSIrs). Objective: To evaluate RSIrs for automated patient-level detection of csPCa. Design, setting, and participants: We retrospectively studied all patients (n = 151) who underwent 3 T mpMRI and RSI (a 2-min sequence on a clinical scanner) for suspected prostate cancer at University of California San Diego during 2017- 2019 and had prostate biopsy within 180 d of MRI. Intervention: We calculated the maximum RSIrs and minimum ADC within the pros-tate, and obtained PI-RADS v2.1 from medical records. Outcome measurements and statistical analysis: We compared the performance of RSIrs, ADC, and PI-RADS for the detection of csPCa (grade group >2) on the best available histopathology (biopsy or prostatectomy) using the area under the curve (AUC) with two-tailed a = 0.05. We also explored whether the combination of PI-RADS and RSIrs might be superior to PI-RADS alone and performed subset anal-yses within the peripheral and transition zones.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 50 条
  • [21] Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging
    Shahedi, Maysam
    Cool, Derek W.
    Bauman, Glenn S.
    Bastian-Jordan, Matthew
    Fenster, Aaron
    Ward, Aaron D.
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (06) : 782 - 795
  • [22] Is magnetic resonance imaging necessary in the staging of prostate cancer?
    Tüzel, E
    Sevinç, M
    Obuz, F
    Sade, M
    Kirkali, Z
    UROLOGIA INTERNATIONALIS, 1998, 61 (04) : 227 - 231
  • [23] Evaluation of the potential of diffusion-weighted imaging in prostate cancer detection
    Morgan, V. A.
    Kyriazi, S.
    Ashley, S. E.
    DeSouza, N. M.
    ACTA RADIOLOGICA, 2007, 48 (06) : 695 - 703
  • [24] The relevance of magnetic resonance imaging (MRI) for the detection and exclusion of prostate cancer
    Stattaus, J.
    Forsting, M.
    UROLOGE, 2010, 49 (03): : 351 - 355
  • [25] Magnetic resonance imaging in prostate cancer detection and management: a systematic review
    Monni, Fabio
    Fontanella, Paolo
    Grasso, Angelica
    Wiklund, Peter
    Ou, Yen-Chuan
    Randazzo, Marco
    Rocco, Bernardo
    Montanari, Emanuele
    Bianchi, Giampaolo
    MINERVA UROLOGICA E NEFROLOGICA, 2017, 69 (06) : 567 - 578
  • [26] Role of multiparametric magnetic resonance imaging in early detection of prostate cancer
    De Visschere P.J.L.
    Briganti A.
    Fütterer J.J.
    Ghadjar P.
    Isbarn H.
    Massard C.
    Ost P.
    Sooriakumaran P.
    Surcel C.I.
    Valerio M.
    van den Bergh R.C.N.
    Ploussard G.
    Giannarini G.
    Villeirs G.M.
    Insights into Imaging, 2016, 7 (2) : 205 - 214
  • [27] Role of diffusion-weighted magnetic resonance imaging in prostate cancer evaluation
    Rinaldi, D.
    Fiocchi, F.
    Ligabue, G.
    Bianchi, G.
    Torricelli, P.
    RADIOLOGIA MEDICA, 2012, 117 (08): : 1429 - 1440
  • [28] Role of diffusion-weighted magnetic resonance imaging in prostate cancer evaluation
    Rinaldi, D.
    Fiocchi, F.
    Ligabue, G.
    Bianchi, G.
    Torricelli, P.
    RADIOLOGIA MEDICA, 2012, 117 (08): : 1429 - 1440
  • [29] Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging
    Kwak, Jin Tae
    Xu, Sheng
    Wood, Bradford J.
    Turkbey, Baris
    Choyke, Peter L.
    Pinto, Peter A.
    Wang, Shijun
    Summers, Ronald M.
    MEDICAL PHYSICS, 2015, 42 (05) : 2368 - 2378
  • [30] Endorectal magnetic resonance imaging staging of prostate cancer
    Chandra, Ronil V.
    Heinze, Stefan
    Dowling, Richard
    Shadbolt, Clair
    Costello, Anthony
    Pedersen, John
    ANZ JOURNAL OF SURGERY, 2007, 77 (10) : 860 - 865