SINDy for delay-differential equations: application to model bacterial zinc response

被引:11
作者
Sandoz, Antoine [1 ,2 ]
Ducret, Verena [1 ]
Gottwald, Georg A. [4 ]
Vilmart, Gilles [2 ]
Perron, Karl [1 ,3 ]
机构
[1] Univ Geneva, Dept Plant Sci, Microbiol Unit, CP64, CH-1211 Geneva 4, Switzerland
[2] Univ Geneva, Sect Math, CP64, CH-1211 Geneva 4, Switzerland
[3] Univ Geneva, Sect Pharmaceut Sci, CP64, CH-1211 Geneva 4, Switzerland
[4] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2023年 / 479卷 / 2269期
基金
瑞士国家科学基金会; 澳大利亚研究理事会;
关键词
data-driven modelling; SINDy; delay differential equations; Pseudomonas aeruginosa; zinc homeostasis; MERR FAMILY; NOISY DATA; STRATEGIES; RESISTANCE; METAL; DISCOVERY; SEQUENCE; SYSTEMS; ROLES;
D O I
10.1098/rspa.2022.0556
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We extend the data-driven method of sparse identification of nonlinear dynamics (SINDy) developed by Brunton et al., Proc. Natl Acad. Sci. USA 113 (2016) to the case of delay differential equations (DDEs). This is achieved in a bilevel optimization procedure by first applying SINDy for fixed delay and then subsequently optimizing the error of the reconstructed SINDy model over delay times. We test the SINDy-delay method on a noisy short dataset from a toy DDE and show excellent agreement. We then apply the method to experimental data of gene expressions in the bacterium Pseudomonas aeruginosa subject to the influence of zinc. The derived SINDy model suggests that the increase in zinc concentration mainly affects the time delay and not the strengths of the interactions between the different agents controlling the zinc export mechanism.
引用
收藏
页数:18
相关论文
共 51 条
  • [1] The evolution of two-component systems in bacteria reveals different strategies for niche adaptation
    Alm, Eric
    Huang, Katherine
    Arkin, Adam
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (11) : 1329 - 1342
  • [2] [Anonymous], 2019, VERS 9 10 0 R2019B
  • [3] Biggio L, 2021, PR MACH LEARN RES, V139
  • [4] Zn(II) metabolism in prokaryotes
    Blencowe, DK
    Morby, AP
    [J]. FEMS MICROBIOLOGY REVIEWS, 2003, 27 (2-3) : 291 - 311
  • [5] The MerR family of transcriptional regulators
    Brown, NL
    Stoyanov, JV
    Kidd, SP
    Hobman, JL
    [J]. FEMS MICROBIOLOGY REVIEWS, 2003, 27 (2-3) : 145 - 163
  • [6] Brunton S. L., 2019, DATA DRIVEN SCI ENG, DOI DOI 10.1017/9781108380690
  • [7] Chaos as an intermittently forced linear system
    Brunton, Steven L.
    Brunton, Bingni W.
    Proctor, Joshua L.
    Kaiser, Eurika
    Kutz, J. Nathan
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [8] Discovering governing equations from data by sparse identification of nonlinear dynamical systems
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) : 3932 - 3937
  • [9] Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface
    Capdevila, Daiana A.
    Wang, Jiefei
    Giedroc, David P.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (40) : 20858 - 20868
  • [10] Discovery of Nonlinear Multiscale Systems: Sampling Strategies and Embeddings
    Champion, Kathleen P.
    Brunton, Steven L.
    Kutz, J. Nathan
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (01): : 312 - 333