Adaptive Granulation-Based Convolutional Neural Networks With Single Pass Learning for Remote Sensing Image Classification

被引:1
|
作者
Pal, Sankar K. K. [1 ]
Kumar, Dasari Arun [1 ,2 ]
机构
[1] Indian Stat Inst, Ctr Soft Comp Res, Kolkata, West Bengal, India
[2] KSRM Coll Engn, Dept Elect & Commun Engn, Kadapa 516005, Andhra Pradesh, India
关键词
Deep adaptive granulation; fuzzy rough feature selection; image classification; pixel uncertainty; remote sensing; roughness measure; weighted class-membership; MULTILAYER PERCEPTRON; INFORMATION; FUSION; ALGORITHM; SETS; SAR;
D O I
10.1109/JSTARS.2022.3223180
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional neural networks (CNNs) with the characteristics like spatial filtering, feed-forward mechanism, and back propagation-based learning are being widely used recently for remote sensing (RS) image classification. The fixed architecture of CNN with a large number of network parameters is managed by learning through a number of iterations, and, thereby increasing the computational burden. To deal with this issue, an adaptive granulation-based CNN (AGCNN) model is proposed in the present study. AGCNN works in the framework of fuzzy set theoretic data granulation and adaptive learning by upgrading the network architecture to accommodate the information of new samples, and avoids iterative training, unlike conventional CNN. Here, granulation is done both on the 2-D input image and its 1-D representative feature vector output, as obtained after a series of convolution and pooling layers. While the class-dependent fuzzy granulation on input image space exploits more domain knowledge for uncertainty modeling, rough set theoretic reducts computed on them select only the relevant features for input to CNN. During classification of unknown patterns, a new principle of roughness-minimization with weighted membership is adopted on overlapping granules to deal with the ambiguous cases. All these together improve the classification accuracy of AGCNN, while reducing the computational time significantly. The superiority of AGCNN over some state-of-the-art models in terms of different performance metrics is demonstrated for hyperspectral and multispectral images both quantitatively and visually.
引用
收藏
页码:57 / 70
页数:14
相关论文
共 50 条
  • [21] Improved convolutional neural network in remote sensing image classification
    Xu, Binghui
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8169 - 8180
  • [22] Remote sensing image classification based on evidence theory and neural networks
    Chen, G
    Li, BC
    Guo, ZG
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 971 - 976
  • [23] Siamese Convolutional Neural Networks for Remote Sensing Scene Classification
    Liu, Xuning
    Zhou, Yong
    Zhao, Jiaqi
    Yao, Rui
    Liu, Bing
    Zheng, Yi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1200 - 1204
  • [24] Transfer Learning Based Convolutional Neural Network for Classification of Remote Sensing Images
    Ramasamy, Meena Prakash
    Krishnasamy, Valarmathi
    Ramapackiam, Shantha Selva Kumari
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2023, 23 (04) : 31 - 40
  • [25] Convolutional Neural Networks for Multimodal Remote Sensing Data Classification
    Wu, Xin
    Hong, Danfeng
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [26] Granulation-based self-training for the semi-supervised classification of remote-sensing images
    Aydav, Prem Shankar Singh
    Minz, Sonajharia
    GRANULAR COMPUTING, 2020, 5 (03) : 309 - 327
  • [27] Deep Neural Networks for Remote Sensing Image Classification
    Miniello, Giorgia
    La Salandra, Marco
    Vino, Gioacchino
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 117 - 128
  • [28] Recurrent neural networks for remote sensing image classification
    Lakhal, Mohamed Ilyes
    Cevikalp, Hakan
    Escalera, Sergio
    Ofli, Ferda
    IET COMPUTER VISION, 2018, 12 (07) : 1040 - 1045
  • [29] Granulation-based self-training for the semi-supervised classification of remote-sensing images
    Prem Shankar Singh Aydav
    Sonajharia Minz
    Granular Computing, 2020, 5 : 309 - 327
  • [30] Deep convolutional neural network structure design for remote sensing image scene classification based on transfer learning
    Zhang, Xiaoxia
    Guo, Yong
    Zhang, Xia
    2020 THIRD INTERNATIONAL WORKSHOP ON ENVIRONMENT AND GEOSCIENCE, 2020, 569