The scale transformed power prior for use with historical data from a different outcome model

被引:6
作者
Alt, Ethan M. [1 ]
Nifong, Brady [1 ]
Chen, Xinxin [1 ]
Psioda, Matthew A. [1 ]
Ibrahim, Joseph G. [1 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27515 USA
关键词
Bayesian analysis; heterogeneous endpoints; historical data; information borrowing; PRIOR DISTRIBUTIONS;
D O I
10.1002/sim.9598
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop the scale transformed power prior for settings where historical and current data involve different data types, such as binary and continuous data. This situation arises often in clinical trials, for example, when historical data involve binary responses and the current data involve some other type of continuous or discrete outcome. The power prior, proposed by Ibrahim and Chen, does not address the issue of different data types. Herein, we develop a new type of power prior, which we call the scale transformed power prior (straPP). The straPP is constructed by transforming the power prior for the historical data by rescaling the parameter using a function of the Fisher information matrices for the historical and current data models, thereby shifting the scale of the parameter vector from that of the historical to that of the current data. Examples are presented to motivate the need for such a transformation, and simulation studies are presented to illustrate the performance advantages of the straPP over the power prior and other informative and noninformative priors. A real dataset from a clinical trial undertaken to study a novel transitional care model for stroke survivors is used to illustrate the methodology.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 27 条
  • [1] Modified power prior with multiple historical trials for binary endpoints
    Banbeta, Akalu
    van Rosmalen, Joost
    Dejardin, David
    Lesaffre, Emmanuel
    [J]. STATISTICS IN MEDICINE, 2019, 38 (07) : 1147 - 1169
  • [2] Berry SM, 2010, CH CRC BIOSTAT SER, P1, DOI 10.1201/EBK1439825488
  • [3] Incorporating historical models with adaptive Bayesian updates
    Boonstra, Philip S.
    Barbaro, Ryan P.
    [J]. BIOSTATISTICS, 2020, 21 (02) : E47 - E64
  • [4] Bayesian sample size re-estimation using power priors
    Brakenhoff, T. B.
    Roes, K. C. B.
    Nikolakopoulos, S.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (06) : 1664 - 1675
  • [5] Power prior distributions for generalized linear models
    Chen, MH
    Ibrahim, JG
    Shao, QM
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 84 (1-2) : 121 - 137
  • [6] Prior elicitation, variable selection and Bayesian computation for logistic regression models
    Chen, MH
    Ibrahim, JG
    Yiannoutsos, C
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 223 - 242
  • [7] Power priors and their use in clinical trials
    De Santis, F
    [J]. AMERICAN STATISTICIAN, 2006, 60 (02) : 122 - 129
  • [8] Using historical data for Bayesian sample size determination
    De Santis, Fulvio
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 95 - 113
  • [9] Evaluating water quality using power priors to incorporate historical information
    Duan, YY
    Ye, KY
    Smith, EP
    [J]. ENVIRONMETRICS, 2006, 17 (01) : 95 - 106
  • [10] Randomized Pragmatic Trial of Stroke Transitional Care The COMPASS Study
    Duncan, Pamela W.
    Bushnell, Cheryl D.
    Jones, Sara B.
    Psioda, Matthew A.
    Gesell, Sabina B.
    D'Agostino, Ralph B., Jr.
    Sissine, Mysha E.
    Coleman, Sylvia W.
    Johnson, Anna M.
    Barton-Percival, Blair F.
    Prvu-Bettger, Janet
    Calhoun, Adrienne G.
    Cummings, Doyle M.
    Freburger, Janet K.
    Halladay, Jacqueline R.
    Kucharska-Newton, Anna M.
    Lundy-Lamm, Gladys
    Lutz, Barbara J.
    Mettam, Laurie H.
    Pastva, Amy M.
    Xenakis, James G.
    Ambrosius, Walter T.
    Radman, Meghan D.
    Vetter, Betsy
    Rosamond, Wayne D.
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2020, 13 (06): : 322 - 332