Hybrid Model-Driven Spectroscopic Network for Rapid Retrieval of Turbine Exhaust Temperature

被引:6
作者
Fu, Yalei [1 ]
Zhang, Rui [1 ]
Xia, Jiangnan [1 ]
Gough, Andrew [2 ]
Clark, Stuart [2 ]
Upadhyay, Abhishek [2 ]
Enemali, Godwin [1 ]
Armstrong, Ian [2 ]
Ahmed, Ihab [3 ]
Pourkashanian, Mohamed [3 ]
Wright, Paul [4 ]
Ozanyan, Krikor [4 ]
Lengden, Michael [2 ]
Johnstone, Walter [2 ]
Polydorides, Nick [1 ]
McCann, Hugh [1 ]
Liu, Chang [1 ]
机构
[1] Univ Edinburgh, Sch Engn, Edinburgh EH9 3JL, Scotland
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XQ, Scotland
[3] Univ Sheffield, Dept Mech Engn, Sheffield S10 2TN, England
[4] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, England
基金
英国工程与自然科学研究理事会;
关键词
Deep neural network (DNN); exhaust gas temperature (EGT); gas turbine engine (GTE); signal processing; wavelength modulation spectroscopy (WMS); WAVELENGTH-MODULATION SPECTROSCOPY; TOMOGRAPHY;
D O I
10.1109/TIM.2023.3328086
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Exhaust gas temperature (EGT) is a key parameter in diagnosing the health of gas turbine engines (GTEs). In this article, we propose a model-driven spectroscopic network with strong generalizability to monitor the EGT rapidly and accurately. The proposed network relies on data obtained from a well-proven temperature measurement technique, i.e., wavelength modulation spectroscopy (WMS), with the novelty of introducing an underlying physical absorption model and building a hybrid dataset from simulation and experiment. This hybrid model-driven (HMD) network enables strong noise resistance of the neural network against real-world experimental data. The proposed network is assessed by in situ measurements of EGT on an aero-GTE at millisecond-level temporal response. Experimental results indicate that the proposed network substantially outperforms previous neural-network methods in terms of accuracy and precision of the measured EGT when the GTE is steadily loaded.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 30 条
[21]   Adaptively Optimized Gas Analysis Model with Deep Learning for Near-Infrared Methane Sensors [J].
Sun, Jiachen ;
Tian, Linbo ;
Chang, Jun ;
Kolomenskii, Alexandre A. ;
Schuessler, Hans A. ;
Xia, Jinbao ;
Feng, Chao ;
Zhang, Sasa .
ANALYTICAL CHEMISTRY, 2022, 94 (04) :2321-2332
[22]   Retrieval of gas concentrations in optical spectroscopy with deep learning [J].
Tian, Linbo ;
Sun, Jiachen ;
Chang, Jun ;
Xia, Jinbao ;
Zhang, Zhifeng ;
Kolomenskii, Alexandre A. ;
Schuessler, Hans A. ;
Zhang, Sasa .
MEASUREMENT, 2021, 182
[23]   Tomographic imaging of carbon dioxide in the exhaust plume of large commercial aero-engines [J].
Upadhyay, Abhishek ;
Lengden, Michael ;
Enemali, Godwin ;
Stewart, George ;
Johnstone, Walter ;
Wilson, David ;
Humphries, Gordon ;
Benoy, Thomas ;
Black, John ;
Chighine, Andrea ;
Fisher, Edward ;
Zhang, Rui ;
Liu, Chang ;
Polydorides, Nick ;
Tsekenis, Alex ;
Wright, Paul ;
Kliment, Joshua ;
Nilsson, Johan ;
Feng, Yutong ;
Archilla, Victor ;
Rodriguez-Carmona, Javier ;
Sanchez-Valdepenas, Jesus ;
Beltran, Marta ;
Polo, Valentin ;
Armstrong, Ian ;
Mauchline, Iain ;
Walsh, Douglas ;
Johnson, Mark ;
Bauldreay, Joanna ;
McCann, Hugh .
APPLIED OPTICS, 2022, 61 (28) :8540-8552
[24]  
Vaswani A, 2017, ADV NEUR IN, V30
[25]   Gas Turbine Engine Health Management: Past, Present, and Future Trends [J].
Volponi, Allan J. .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2014, 136 (05)
[26]   Y-Net: a dual-branch deep learning network for nonlinear absorption tomography with wavelength modulation spectroscopy [J].
Wang, Zhenhai ;
Zhu, Ning ;
Wang, Weitian ;
Chao, Xing .
OPTICS EXPRESS, 2022, 30 (02) :2156-2172
[27]   Design of high-performance photodiode receivers for optical tomography [J].
Wright, P ;
Ozanyan, KB ;
Carey, SJ ;
McCann, H .
IEEE SENSORS JOURNAL, 2005, 5 (02) :281-288
[28]   FPGA-Accelerated Distributed Sensing System for Real-Time Industrial Laser Absorption Spectroscopy Tomography at Kilo-Hertz [J].
Xia, Jiangnan ;
Enemali, Godwin ;
Zhang, Rui ;
Fu, Yalei ;
Mccann, Hugh ;
Zhou, Bin ;
Liu, Chang .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) :2529-2539
[29]   Ultra-Low Sampled and High Precision TDLAS Thermometry Via Artificial Neural Network [J].
Xie, Heng ;
Xu, Lijun ;
Tan, Yutian ;
Hou, Guangyu ;
Cao, Zhang .
IEEE PHOTONICS JOURNAL, 2021, 13 (03)
[30]   A fast sensor for non-intrusive measurement of concentration and temperature in turbine exhaust [J].
Zhang, Rui ;
Xia, Jiangnan ;
Ahmed, Ihab ;
Gough, Andrew ;
Armstrong, Ian ;
Upadhyay, Abhishek ;
Fu, Yalei ;
Enemali, Godwin ;
Lengden, Michael ;
Johnstone, Walter ;
Wright, Paul ;
Ozanyan, Krikor ;
Pourkashanian, Mohamed ;
McCann, Hugh ;
Liu, Chang .
SENSORS AND ACTUATORS B-CHEMICAL, 2023, 396