The 3-Isogeny Selmer Groups of the Elliptic Curves y2=x3+n2

被引:0
作者
Chan, Stephanie [1 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
关键词
2-SELMER GROUPS; SIZE; TWISTS; RANKS;
D O I
10.1093/imrn/rnad266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the family of elliptic curves E-n : y(2) = x(3) + n(2), where n varies over positive cubefree integers. There is a rational 3-isogeny phi from E-n to E-n : y(2) = x(3) - 27n(2 )and a dual isogeny phi : E-n -> E-n. We show that for almost all n, the rank of Sel(phi)(E-n) is 0, and the rank of Sel(phi)(E-n) is determined by the number of prime factors of n that are congruent to 2 mod 3 and the congruence class of n mod 9.
引用
收藏
页码:7571 / 7593
页数:23
相关论文
共 30 条
  • [1] The Distribution of H8-Extensions of Quadratic Fields
    Alberts, Brandon
    Klys, Jack
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (02) : 1508 - 1572
  • [2] Alpoge L., 2022, ARXIV
  • [3] The average size of the 3-isogeny Selmer groups of elliptic curves y2 = x3 + k
    Bhargava, Manjul
    Elkies, Noam
    Shnidman, Ari
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (01): : 299 - 327
  • [4] CASSELS JWS, 1965, J REINE ANGEW MATH, V217, P180
  • [5] Elementary 3-descent with a 3-isogeny
    Cohen, Henri
    Pazuki, Fabien
    [J]. ACTA ARITHMETICA, 2009, 140 (04) : 369 - 404
  • [6] A formula for the Selmer group of a rational three-isogeny
    DeLong, M
    [J]. ACTA ARITHMETICA, 2002, 105 (02) : 119 - 131
  • [7] Three-Selmer groups for elliptic curves with 3-torsion
    Feng, Tony
    James, Kevin
    Kim, Carolyn
    Ramos, Eric
    Trentacoste, Catherine
    Xue, Hui
    [J]. RAMANUJAN JOURNAL, 2013, 31 (03) : 435 - 459
  • [8] On the 4-rank of class groups of quadratic number fields
    Fouvry, Etienne
    Kluners, Jurgen
    [J]. INVENTIONES MATHEMATICAE, 2007, 167 (03) : 455 - 513
  • [9] ON THE 4-RANK OF CLASS GROUPS OF DIRICHLET BIQUADRATIC FIELDS
    Fouvry, Etienne
    Koymans, Peter
    Pagano, Carlo
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2022, 21 (05) : 1543 - 1570
  • [10] The polynomial X2+Y4 captures its primes
    Friedlander, J
    Iwaniec, H
    [J]. ANNALS OF MATHEMATICS, 1998, 148 (03) : 945 - 1040