Decisions with ChatGPT: Reexamining choice overload in ChatGPT recommendations

被引:63
作者
Kim, Jungkeun [1 ]
Kim, Jeong Hyun [2 ]
Kim, Changju [3 ]
Park, Jooyoung [4 ]
机构
[1] Auckland Univ Technol, Dept Mkt, 120 Mayoral Dr, Auckland 1010, New Zealand
[2] Kyung Hee Univ, Smart Tourism Res Ctr, Kyung Hee Dearo 26, Seoul, South Korea
[3] Ritsumeikan Univ, Coll Business Adm, 2-150 Iwakura, Osaka, Ibaraki 5678570, Japan
[4] Peking Univ, HSBC Business Sch Univ Town, Shenzhen 518055, Peoples R China
基金
日本学术振兴会;
关键词
AI versus human recommendations; Artificial intelligence; ChatGPT; Choice overload; Recommendation agents; INFORMATION; AGENTS; VARIETY; COPE; TOO;
D O I
10.1016/j.jretconser.2023.103494
中图分类号
F [经济];
学科分类号
02 ;
摘要
This research examines how individuals respond differently to recommendation options generated by ChatGPT, an AI-powered language model, in five studies. In contrast to previous research on choice overload, Studies 1 and 2 demonstrate that people tend to respond positively to a large number of recommendation options (60 options), revealing diverse consumer perceptions of AI-generated recommendations. Studies 3 and 4 further illustrate the moderating effect of recommendation agents and indicate that choice overload elicits distinct patterns of consumer reactions depending on whether the recommendations are from a human or AI agent. Lastly, Study 5 directly measures consumer preferences for recommendation agents, revealing a general preference for ChatGPT, particularly when a large number of options are available. These findings have significant implications for recommendation system design and user preferences regarding AI-powered recommendations.
引用
收藏
页数:11
相关论文
共 67 条
[1]   The effect of gender stereotypes on artificial intelligence recommendations [J].
Ahn, Jungyong ;
Kim, Jungwon ;
Sung, Yongjun .
JOURNAL OF BUSINESS RESEARCH, 2022, 141 :50-59
[2]   Decision Quality Measures in Recommendation Agents Research [J].
Aksoy, Lerzan ;
Cooil, Bruce ;
Lurie, Nicholas H. .
JOURNAL OF INTERACTIVE MARKETING, 2011, 25 (02) :110-122
[3]   Using Recommendation Agents to Cope with Information Overload [J].
Aljukhadar, Muhammad ;
Senecal, Sylvain ;
Daoust, Charles-Etienne .
INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE, 2012, 17 (02) :41-70
[4]  
Anand SS, 2005, LECT NOTES ARTIF INT, V3169, P1
[5]   VARIETY IN RETAILING [J].
BAUMOL, WJ ;
IDE, EA .
MANAGEMENT SCIENCE, 1956, 3 (01) :93-101
[6]   The most human bot: Female gendering increases humanness perceptions of bots and acceptance of AI [J].
Borau, Sylvie ;
Otterbring, Tobias ;
Laporte, Sandra ;
Fosso Wamba, Samuel .
PSYCHOLOGY & MARKETING, 2021, 38 (07) :1052-1068
[7]   Should we worry about filter bubbles? [J].
Borgesius, Frederik J. Zuiderveen ;
Trilling, Damian ;
Moller, Judith ;
Bodo, Balazs ;
de Vreese, Claes H. ;
Helberger, Natali .
INTERNET POLICY REVIEW, 2016, 5 (01)
[8]  
Burke Robin, 2007, HybridWeb Recommender Systems, P377
[9]   When more is less: The other side of artificial intelligence recommendation [J].
Chen, Sihua ;
Qiu, Han ;
Zhao, Shifei ;
Han, Yuyu ;
He, Wei ;
Siponen, Mikko ;
Mou, Jian ;
Xiao, Hua .
JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING, 2022, 7 (02) :213-232
[10]   Decision focus and consumer choice among assortments [J].
Chernev, Alexander .
JOURNAL OF CONSUMER RESEARCH, 2006, 33 (01) :50-59