Dual-Functional Energy Harvesting and Low-Frequency Vibration Attenuation: Electromagnetic Resonant Shunt Series Quasi-Zero-Stiffness Isolators

被引:0
作者
Yang, Qingchao [1 ]
Ma, Zhaozhao [2 ,3 ]
Zhou, Ruiping [2 ]
Lee, Heow Pueh [3 ]
Chai, Kai [1 ]
机构
[1] Naval Univ Engn, Coll Naval Architecture & Ocean Engn, Wuhan 430033, Peoples R China
[2] Wuhan Univ Technol, Sch Naval Architecture Ocean & Energy Power Engn, Wuhan 430063, Peoples R China
[3] Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 12期
基金
中国国家自然科学基金;
关键词
low-frequency vibration; quasi-zero-stiffness; energy harvesting; electromagnetic resonant shunt damping; EULER BUCKLED BEAM; NEGATIVE-STIFFNESS; PERFORMANCE;
D O I
10.3390/app13127302
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent times, there has been a significant focus on electromagnetic resonant shunt damping (ERSD) and quasi-zero-stiffness vibration isolators (QZS VI) as prominent solutions for vibration mitigation or energy harvesting. In this paper, an innovative retrofittable model is proposed for dual-functional energy harvesting and low-frequency vibration attenuation by combining the ERSD and two-stage quasi-zero-stiffness vibration isolator (TQZS VI). The viscous dissipative element between the TQZS VI upper and lower layers is implemented using an electromagnetic shunt transducer that is connected in parallel with a resonant RLC (resistor-inductor-capacitor) circuit. Firstly, the mathematical model of the electromagnetic resonant shunt series quasi-zero-stiffness isolator (ERS-TQZS VI) is developed. Then, the magnitude-frequency response equations of the ERS-TQZS VI system are approximately solved using the harmonic balance method (HBM) in combination with the pseudo-arc-length method (PLM). The analytical approach is validated using numerical simulations. Moreover, the force transmissibility and output power of the ERS-TQZS VI are defined, and detailed parametric analysis for energy harvesting and low-frequency vibration attenuation is performed to assess the critical design parameters that result in optimal performance of the ERS-TQZS VI. The results demonstrate that the ERS-TQZS VI exhibits a significant reduction in resonance peaks of low-frequency vibration while simultaneously enabling effective vibration energy harvesting.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Design of quasi-zero-stiffness elastic diodes for low-frequency nonreciprocity through machine learning
    He, Junsen
    Zhou, Jiaxi
    Wang, Kai
    Wang, Qiang
    ACTA MECHANICA SINICA, 2024, 40 (07)
  • [32] Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps
    Cai, Changqi
    Zhou, Jiaxi
    Wu, Linchao
    Wang, Kai
    Xu, Daolin
    Ouyang, Huajiang
    COMPOSITE STRUCTURES, 2020, 236
  • [33] Simultaneous broadband vibration isolation and energy harvesting at low frequencies with quasi-zero stiffness and nonlinear monostability
    Fang, Shitong
    Chen, Keyu
    Zhao, Bao
    Lai, Zhihui
    Zhou, Shengxi
    Liao, Wei-Hsin
    JOURNAL OF SOUND AND VIBRATION, 2023, 553
  • [34] An Origami-Inspired Quasi-zero Stiffness Structure for Low-Frequency Vibration Isolation
    Zeng, Peng
    Yang, Yuanhan
    Huang, Long
    Yin, Lairong
    Liu, Bei
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (04) : 1463 - 1475
  • [35] Three-dimensional quasi-zero-stiffness metamaterial for low-frequency and wide complete band gap
    Lin, Qida
    Zhou, Jiaxi
    Wang, Kai
    Xu, Daolin
    Wen, Guilin
    Wang, Qiang
    COMPOSITE STRUCTURES, 2023, 307
  • [36] Ultra-low frequency vibration control of urban rail transit: the general quasi-zero-stiffness vibration isolator
    Wang, Liuchong
    Zhao, Yannan
    Sang, Tao
    Zhou, Haiyang
    Wang, Ping
    Zhao, Caiyou
    VEHICLE SYSTEM DYNAMICS, 2022, 60 (05) : 1788 - 1805
  • [37] Dynamic research on a low-frequency vibration isolation system of quasi-zero stiffness
    Jurevicius, M.
    Vekteris, V.
    Viselga, G.
    Turla, V
    Kilikevicius, A.
    Iljin, I.
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2019, 38 (02) : 684 - 691
  • [38] Origami-inspire quasi-zero stiffness structure for flexible low-frequency vibration isolation
    Yu, Kangfan
    Chen, Yunwei
    Yu, Chuanyun
    Li, Pan
    Ren, Zihao
    Zhang, Jianrun
    Lu, Xi
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 276
  • [39] Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine
    Jin, Guoxin
    Wang, Zhenghao
    Yang, Tianzhi
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2022, 43 (06) : 813 - 824
  • [40] Three-magnet-ring quasi-zero stiffness isolator for low-frequency vibration isolation
    Wang, Shang
    Hou, Lei
    Meng, Qingye
    Cui, Gengshuo
    Wang, Xiaodong
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2024, 4 (02): : 153 - 170