Dual-Functional Energy Harvesting and Low-Frequency Vibration Attenuation: Electromagnetic Resonant Shunt Series Quasi-Zero-Stiffness Isolators

被引:0
作者
Yang, Qingchao [1 ]
Ma, Zhaozhao [2 ,3 ]
Zhou, Ruiping [2 ]
Lee, Heow Pueh [3 ]
Chai, Kai [1 ]
机构
[1] Naval Univ Engn, Coll Naval Architecture & Ocean Engn, Wuhan 430033, Peoples R China
[2] Wuhan Univ Technol, Sch Naval Architecture Ocean & Energy Power Engn, Wuhan 430063, Peoples R China
[3] Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 12期
基金
中国国家自然科学基金;
关键词
low-frequency vibration; quasi-zero-stiffness; energy harvesting; electromagnetic resonant shunt damping; EULER BUCKLED BEAM; NEGATIVE-STIFFNESS; PERFORMANCE;
D O I
10.3390/app13127302
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent times, there has been a significant focus on electromagnetic resonant shunt damping (ERSD) and quasi-zero-stiffness vibration isolators (QZS VI) as prominent solutions for vibration mitigation or energy harvesting. In this paper, an innovative retrofittable model is proposed for dual-functional energy harvesting and low-frequency vibration attenuation by combining the ERSD and two-stage quasi-zero-stiffness vibration isolator (TQZS VI). The viscous dissipative element between the TQZS VI upper and lower layers is implemented using an electromagnetic shunt transducer that is connected in parallel with a resonant RLC (resistor-inductor-capacitor) circuit. Firstly, the mathematical model of the electromagnetic resonant shunt series quasi-zero-stiffness isolator (ERS-TQZS VI) is developed. Then, the magnitude-frequency response equations of the ERS-TQZS VI system are approximately solved using the harmonic balance method (HBM) in combination with the pseudo-arc-length method (PLM). The analytical approach is validated using numerical simulations. Moreover, the force transmissibility and output power of the ERS-TQZS VI are defined, and detailed parametric analysis for energy harvesting and low-frequency vibration attenuation is performed to assess the critical design parameters that result in optimal performance of the ERS-TQZS VI. The results demonstrate that the ERS-TQZS VI exhibits a significant reduction in resonance peaks of low-frequency vibration while simultaneously enabling effective vibration energy harvesting.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Quasi-Zero Stiffness Isolator Suitable for Low-Frequency Vibration
    Sui, Guangdong
    Zhang, Xiaofan
    Hou, Shuai
    Shan, Xiaobiao
    Hou, Weijie
    Li, Jianming
    MACHINES, 2023, 11 (05)
  • [22] Customized quasi-zero-stiffness metamaterials for ultra-low frequency broadband vibration isolation
    Liu, Ji
    Wang, Yanhui
    Yang, Shaoqiong
    Sun, Tongshuai
    Yang, Ming
    Niu, Wendong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 269
  • [23] A 3D-printed quasi-zero-stiffness isolator for low-frequency vibration isolation: Modelling and experiments
    Xiao, Lei
    Sun, Xiang
    Cheng, Li
    Yu, Xiang
    JOURNAL OF SOUND AND VIBRATION, 2024, 577
  • [24] A tunable metamaterial using a single beam element with quasi-zero-stiffness characteristics for low-frequency vibration isolation
    Dalela, Srajan
    Ps, Balaji
    Jena, Dibya Prakash
    Leblouba, Moussa
    JOURNAL OF VIBRATION AND CONTROL, 2024, 30 (15-16) : 3641 - 3658
  • [25] Enhanced low-frequency band gap of nonlinear quasi-zero-stiffness metamaterial by lowering stiffness coupling
    Lin, Qida
    Zhou, Jiaxi
    Wang, Kai
    Cai, Changqi
    Wang, Qiang
    NONLINEAR DYNAMICS, 2024,
  • [26] Energy Harvesting from Ultra-low-Frequency Vibrations Through a Quasi-zero Stiffness Electromagnetic Energy Harvester
    Wei Wang
    Ying Zhang
    Chris R. Bowen
    Zon-Han Wei
    Junyi Cao
    Journal of Vibration Engineering & Technologies, 2023, 11 : 3353 - 3369
  • [27] Energy Harvesting from Ultra-low-Frequency Vibrations Through a Quasi-zero Stiffness Electromagnetic Energy Harvester
    Wang, Wei
    Zhang, Ying
    Bowen, Chris R.
    Wei, Zon-Han
    Cao, Junyi
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (07) : 3353 - 3369
  • [28] Modelling and analysis of the quasi-zero-stiffness metamaterial cylindrical shell for low-frequency band gap
    Cai, Changqi
    Guo, Xin
    Yan, Bo
    Wang, Kai
    Zhu, Yongsheng
    Ye, Wei
    Zhou, Jiaxi
    APPLIED MATHEMATICAL MODELLING, 2024, 135 : 90 - 108
  • [29] Simultaneous energy harvesting and vibration isolation via quasi-zero-stiffness support and radially distributed piezoelectric cantilever beams
    Liu, Chaoran
    Zhao, Rui
    Yu, Kaiping
    Lee, Heow Pueh
    Liao, Baopeng
    APPLIED MATHEMATICAL MODELLING, 2021, 100 : 152 - 169
  • [30] Design and characterization of a compact tripod quasi-zero-stiffness device for isolating low-frequency vibrations
    Li, Xuan
    Ding, Bingxiao
    Ran, Jinchao
    Li, Chenglin
    Dong, Xiaomin
    Chen, Shih-Chi
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2024, 91 : 632 - 643