Global wellposedness of the 3D compressible Navier-Stokes equations with free surface in the maximal regularity class

被引:3
作者
Shibata, Yoshihiro [1 ,2 ]
Zhang, Xin [3 ]
机构
[1] Waseda Univ, Dept Math, Ohkubo 3-4-1, Shinjuku Ku, Tokyo 1698555, Japan
[2] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[3] Tongji Univ, Sch Math Sci, 1239 Siping Rd, Shanghai 200092, Peoples R China
关键词
compressible viscous barotropic fluid; free boundary problem; exterior domain; global well-posedness; maximal L-p-L-q regularity; L-p-L-q decay properties; BOUNDARY VALUE-PROBLEM; OPTIMAL DECAY-RATE; CRITICAL SPACES; MOTION; EXISTENCE; BEHAVIOR;
D O I
10.1088/1361-6544/acd90b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the global well posedness issue of the compressible Navier-Stokes equations (CNS) describing barotropic compressible fluid flow with free surface occupied in the three dimensional exterior domain. Combining the maximal L-p-L-q estimate and the L-p-L-q decay estimate of solutions to the linearized equations, we prove the unique existence of global in time solutions in the time weighted maximal L-p-L-q regularity class for some p > 2 and q > 3. Namely, the solution is bounded as L-p in time and L-q in space. Compared with the previous results of the free boundary value problem of (CNS) in unbounded domains, we relax the regularity assumption on the initial states, which is the advantage by using the maximal L-p-L-q regularity framework. On the other hand, the equilibrium state of the moving boundary of the exterior domain is not necessary the sphere. To our knowledge, this paper is the first result on the long time solvability of the free boundary value problem of (CNS) in the exterior domain.
引用
收藏
页码:3710 / 3733
页数:24
相关论文
共 32 条
[1]   A Global Existence Result for the Compressible Navier-Stokes Equations in the Critical Lp Framework [J].
Charve, Frederic ;
Danchin, Raphael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :233-271
[2]  
Chen QL, 2010, COMMUN PUR APPL MATH, V63, P1173
[3]   Global existence in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
INVENTIONES MATHEMATICAE, 2000, 141 (03) :579-614
[4]   Optimal Time-decay Estimates for the Compressible Navier-Stokes Equations in the Critical L p Framework [J].
Danchin, Raphael ;
Xu, Jiang .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (01) :53-90
[5]  
Enomoto Y., 2018, HDB MATH ANAL MECH V, P2085, DOI DOI 10.1007/978-3-319-13344-752
[6]  
Enomoto Y., 2014, ANN DELLUNIVERSITA F, V60, P55, DOI [10.1007/s11565-013-0194-8, DOI 10.1007/S11565-013-0194-8]
[7]   On the R-Sectoriality and the Initial Boundary Value Problem for the Viscous Compressible Fluid Flow [J].
Enomoto, Yuko ;
Shibata, Yoshihiro .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (03) :441-505
[8]   On the R-boundedness of the solution operators in the study of the compressible viscous fluid flow with free boundary conditions [J].
Goetz, Dario ;
Shibata, Yoshihiro .
ASYMPTOTIC ANALYSIS, 2014, 90 (3-4) :207-236
[9]   Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids [J].
Haspot, Boris .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :427-460
[10]   MULTIDIMENSIONAL DIFFUSION WAVES FOR THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE FLOW [J].
HOFF, D ;
ZUMBRUN, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (02) :603-676