Classification and segmentation of OCT images for age-related macular degeneration based on dual guidance networks

被引:24
作者
Diao, Shengyong [1 ]
Su, Jinzhu [1 ]
Yang, Changqing [1 ]
Zhu, Weifang [1 ]
Xiang, Dehui [1 ]
Chen, Xinjian [1 ,2 ]
Peng, Qing [3 ]
Shi, Fei [1 ]
机构
[1] Soochow Univ, Sch Elect & Informat Engn, MIPAV Lab, Suzhou 215006, Peoples R China
[2] Soochow Univ, State Key Lab Radiat Med & Protect, Suzhou 215123, Peoples R China
[3] Tongji Univ, Shanghai Peoples Hosp 10, Sch Med, Dept Ophthalmol, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
Age -related macular degeneration; Retinal OCT image; Convolutional neural network; Class activation map; Image classification; Image segmentation; OPTICAL COHERENCE TOMOGRAPHY; CHOROIDAL NEOVASCULARIZATION SEGMENTATION; CONVOLUTIONAL NEURAL-NETWORK; DRUSEN SEGMENTATION; ATTENTION;
D O I
10.1016/j.bspc.2023.104810
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Age-related macular degeneration (AMD) is one of the main causes of visual impairment in elderly people, with drusen and choroidal neovascularization (CNV) being two characterizing types of lesions. Based on optical coherence tomography (OCT), image classification can be used in AMD diagnosis, while image segmentation is necessary for quantitative assessment of the lesion area. In this paper, we propose a deep learning framework exploiting dual guidance between the two tasks. Firstly, a complementary mask guided convolutional neural network (CM-CNN) is proposed to perform classification of OCT B-scans with drusen or CNV from normal ones, where the guiding mask is generated by the auxiliary segmentation task. Secondly, a class activation map guided UNet (CAM-UNet) is proposed to achieve segmentation of drusen and CNV lesions, using CAM output from the CM-CNN. Tested on a subset of the public UCSD dataset, and compared with five classification networks, four segmentation networks, and three multi-task networks, the proposed dual guidance network has achieved higher accuracy both in classification and segmentation. The classification accuracy reaches 96.93% and the Dice coefficient for segmentation reaches 77.51%. Results on an extra dataset for detection of macular edema and segmentation of retinal fluids further show the generalizability of the proposed model.
引用
收藏
页数:11
相关论文
共 38 条
[1]  
[Anonymous], 2016, PROC CVPR IEEE
[2]   Multiclass Segmentation as Multitask Learning for Drusen Segmentation in Retinal Optical Coherence Tomography [J].
Asgari, Rhona ;
Orlando, Jose Ignacio ;
Waldstein, Sebastian ;
Schlanitz, Ferdinand ;
Baratsits, Magdalena ;
Schmidt-Erfurth, Ursula ;
Bogunovic, Hrvoje .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 :192-200
[3]   RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge [J].
Bogunovic, Hrvoje ;
Venhuizen, Freerk ;
Klimscha, Sophie ;
Apostolopoulos, Stefanos ;
Bab-Hadiashar, Alireza ;
Bagci, Ulas ;
Beg, Mirza Faisal ;
Bekalo, Loza ;
Chen, Qiang ;
Ciller, Carlos ;
Gopinath, Karthik ;
Gostar, Amirali K. ;
Jeon, Kiwan ;
Ji, Zexuan ;
Kang, Sung Ho ;
Koozekanani, Dara D. ;
Lu, Donghuan ;
Morley, Dustin ;
Parhi, Keshab K. ;
Park, Hyoung Suk ;
Rashno, Abdolreza ;
Sarunic, Marinko ;
Shaikh, Saad ;
Sivaswamy, Jayanthi ;
Tennakoon, Ruwan ;
Yadav, Shivin ;
De Zanet, Sandro ;
Waldstein, Sebastian M. ;
Gerendas, Bianca S. ;
Klaver, Caroline ;
Sanchez, Clara, I ;
Schmidt-Erfurth, Ursula .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1858-1874
[4]   Automated drusen segmentation and quantification in SD-OCT images [J].
Chen, Qiang ;
Leng, Theodore ;
Zheng, Luoluo ;
Kutzscher, Lauren ;
Ma, Jeffrey ;
de Sisternes, Luis ;
Rubin, Daniel L. .
MEDICAL IMAGE ANALYSIS, 2013, 17 (08) :1058-1072
[5]   Long Short-Term Memory Networks for Unconstrained Sleep Stage Classification Using Polyvinylidene Fluoride Film Sensor [J].
Choi, Sang Ho ;
Kwon, Hyun Bin ;
Jin, Hyung Won ;
Yoon, Heenam ;
Lee, Mi Hyun ;
Lee, Yu Jin ;
Park, Kwang Suk .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (12) :3606-3615
[6]   Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification [J].
Fang, Leyuan ;
Wang, Chong ;
Li, Shutao ;
Rabbani, Hossein ;
Chen, Xiangdong ;
Liu, Zhimin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1959-1970
[7]   Fast detection and segmentation of drusen in retinal optical coherence tomography images [J].
Farsiu, Sina ;
Chiu, Stephanie J. ;
Izatt, Joseph A. ;
Toth, Cynthia A. .
OPHTHALMIC TECHNOLOGIES XVIII, 2008, 6844
[8]   CE-Net: Context Encoder Network for 2D Medical Image Segmentation [J].
Gu, Zaiwang ;
Cheng, Jun ;
Fu, Huazhu ;
Zhou, Kang ;
Hao, Huaying ;
Zhao, Yitian ;
Zhang, Tianyang ;
Gao, Shenghua ;
Liu, Jiang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) :2281-2292
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]  
Howard AG, 2017, IEEE C COMPUTER VISI