Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis

被引:51
作者
Claudino dos Santos, Julio Cesar [1 ,2 ]
Portela Lima, Micael Porto [1 ]
de Castro Brito, Gerly Anne [3 ,4 ]
de Barros Viana, Glauce Socorro [3 ]
机构
[1] Christus Univ Ctr UNICHRISTUS, Med Sch, Fortaleza, Ceara, Brazil
[2] Fed Univ Ceara UFC, Grad Program Morphofunct Sci, Fortaleza, Ceara, Brazil
[3] Fed Univ Ceara UFC, Physiol & Pharmacol Dept, Fortaleza, Ceara, Brazil
[4] Fed Univ Ceara UFC, Morphol Dept, Fortaleza, Ceara, Brazil
关键词
Parkinson's disease; Gut-brain axis; Enteric glia; Neuroinflammation; SUBSTANCE-P; BARRIER FUNCTION; NERVOUS-SYSTEM; DYSBIOSIS; CELLS; ACTIVATION; INFLAMMATION; PERMEABILITY; INNERVATION; EXPRESSION;
D O I
10.1016/j.arr.2022.101812
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The microbiota-gut-brain axis or simple gut-brain axis (GBA) is a complex and interactive bidirectional communication network linking the gut to the brain. Alterations in the composition of the gut microbiome have been linked to GBA dysfunction, central nervous system (CNS) inflammation, and dopaminergic degeneration, as those occurring in Parkinson's disease (PD). Besides inflammation, the activation of brain microglia is known to play a central role in the damage of dopaminergic neurons. Inflammation is attributed to the toxic effect of aggregated alpha-synuclein, in the brain of PD patients. It has been suggested that the alpha-synuclein misfolding might begin in the gut and spread "prion-like", via the vagus nerve into the lower brainstem and ultimately to the midbrain, known as the Braak hypothesis. In this review, we discuss how the microbiota-gut-brain axis and environmental influences interact with the immune system to promote a pro-inflammatory state that is involved in the initiation and progression of misfolded alpha-synuclein proteins and the beginning of the early non-motor symptoms of PD. Furthermore, we describe a speculative bidirectional model that explains how the enteric glia is involved in the initiation and spreading of inflammation, epithelial barrier disruption, and alpha-synuclein misfolding, finally reaching the central nervous system and contributing to neuroinflammatory processes involved with the initial non-motor symptoms of PD.
引用
收藏
页数:10
相关论文
共 131 条
[1]   The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic [J].
Ai Huey Tan ;
Lim, Shen Yang ;
Lang, Anthony E. .
NATURE REVIEWS NEUROLOGY, 2022, 18 (08) :476-495
[2]  
[Anonymous], AM J PHYSIOL-GASTR L, V312, pG274
[3]   Changes in enteric neurone phenotype and intestinal functions in a transgenic mouse model of enteric glia disruption [J].
Aubé, AC ;
Cabarrocas, J ;
Bauer, J ;
Philippe, D ;
Aubert, P ;
Doulay, F ;
Liblau, R ;
Galmiche, JP ;
Neunlist, M .
GUT, 2006, 55 (05) :630-637
[4]   Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit [J].
Banks, William A. ;
Gray, Alicia M. ;
Erickson, Michelle A. ;
Salameh, Therese S. ;
Damodarasamy, Mamatha ;
Sheibani, Nader ;
Meabon, James S. ;
Wing, Emily E. ;
Morofuji, Yoichi ;
Cook, David G. ;
Reed, May J. .
JOURNAL OF NEUROINFLAMMATION, 2015, 12
[5]   Serotonin in the gut: Blessing or a curse [J].
Banskota, Suhrid ;
Ghia, Jean-Eric ;
Khan, Waliul, I .
BIOCHIMIE, 2019, 161 :56-64
[6]   Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease [J].
Barrett, Jeffrey C. ;
Hansoul, Sarah ;
Nicolae, Dan L. ;
Cho, Judy H. ;
Duerr, Richard H. ;
Rioux, John D. ;
Brant, Steven R. ;
Silverberg, Mark S. ;
Taylor, Kent D. ;
Barmada, M. Michael ;
Bitton, Alain ;
Dassopoulos, Themistocles ;
Datta, Lisa Wu ;
Green, Todd ;
Griffiths, Anne M. ;
Kistner, Emily O. ;
Murtha, Michael T. ;
Regueiro, Miguel D. ;
Rotter, Jerome I. ;
Schumm, L. Philip ;
Steinhart, A. Hillary ;
Targan, Stephan R. ;
Xavier, Ramnik J. ;
Libioulle, Cecile ;
Sandor, Cynthia ;
Lathrop, Mark ;
Belaiche, Jacques ;
Dewit, Olivier ;
Gut, Ivo ;
Heath, Simon ;
Laukens, Debby ;
Mni, Myriam ;
Rutgeerts, Paul ;
Van Gossum, Andre ;
Zelenika, Diana ;
Franchimont, Denis ;
Hugot, Jean-Pierre ;
de Vos, Martine ;
Vermeire, Severine ;
Louis, Edouard ;
Cardon, Lon R. ;
Anderson, Carl A. ;
Drummond, Hazel ;
Nimmo, Elaine ;
Ahmad, Tariq ;
Prescott, Natalie J. ;
Onnie, Clive M. ;
Fisher, Sheila A. ;
Marchini, Jonathan ;
Ghori, Jilur .
NATURE GENETICS, 2008, 40 (08) :955-962
[7]   Enteric glial cells: new players in gastrointestinal motility? [J].
Bassotti, Gabrio ;
Villanacci, Vincenzo ;
Antonelli, Elisabetta ;
Morelli, Antonio ;
Salerni, Bruno .
LABORATORY INVESTIGATION, 2007, 87 (07) :628-632
[8]   Colitis promotes neuronal differentiation of Sox2+and PLP1+enteric cells [J].
Belkind-Gerson, Jaime ;
Graham, Hannah K. ;
Reynolds, Justin ;
Hotta, Ryo ;
Nagy, Nandor ;
Cheng, Lily ;
Kamionek, Michal ;
Shi, Hai Ning ;
Aherne, Carol M. ;
Goldstein, Allan M. .
SCIENTIFIC REPORTS, 2017, 7
[9]   Enteric Glia at the Crossroads between Intestinal Immune System and Epithelial Barrier: Implications for Parkinson Disease [J].
Benvenuti, Laura ;
D'Antongiovanni, Vanessa ;
Pellegrini, Carolina ;
Antonioli, Luca ;
Bernardini, Nunzia ;
Blandizzi, Corrado ;
Fornai, Matteo .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (23) :1-16
[10]   The Expression and the Cellular Distribution of the Tight Junction Proteins Are Altered in Irritable Bowel Syndrome Patients With Differences According to the Disease Subtype [J].
Bertiaux-Vandaele, Nathalie ;
Youmba, Stephanie Beutheu ;
Belmonte, Liliana ;
Lecleire, Stephane ;
Antonietti, Michel ;
Gourcerol, Guillaume ;
Leroi, Anne-Marie ;
Dechelotte, Pierre ;
Menard, Jean-Francois ;
Ducrotte, Philippe ;
Coeffier, Moise .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2011, 106 (12) :2165-2173