Sobolev Inequalities in Manifolds with Nonnegative Curvature

被引:34
作者
Brendle, Simon [1 ]
机构
[1] Columbia Univ, 2990 Broadway, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
ISOPERIMETRIC-INEQUALITIES; SHARP;
D O I
10.1002/cpa.22070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a sharp Sobolev inequality on manifolds with nonnegative Ricci curvature. Moreover, we prove a Michael-Simon inequality for submanifolds in manifolds with nonnegative sectional curvature. Both inequalities depend on the asymptotic volume ratio of the ambient manifold. (c) 2022 Wiley Periodicals LLC.
引用
收藏
页码:2192 / 2218
页数:27
相关论文
共 18 条
[1]   Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature [J].
Agostiniani, Virginia ;
Fogagnolo, Mattia ;
Mazzieri, Lorenzo .
INVENTIONES MATHEMATICAE, 2020, 222 (03) :1033-1101
[2]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[3]  
[Anonymous], 1999, Metric structures for Riemannian and nonRiemannian spaces
[4]   THE ISOPERIMETRIC INEQUALITY FOR A MINIMAL SUBMANIFOLD IN EUCLIDEAN SPACE [J].
Brendle, Simon .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 34 (02) :595-603
[5]  
Cabre X, 1997, COMMUN PUR APPL MATH, V50, P623, DOI 10.1002/(SICI)1097-0312(199707)50:7<623::AID-CPA2>3.3.CO
[6]  
2-B
[7]  
Cabré X, 2008, DISCRETE CONT DYN-A, V20, P425
[8]   Sharp isoperimetric inequalities via the ABP [J].
Cabre, Xavier ;
Ros-Oton, Xavier ;
Serra, Joaquim .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (12) :2971-2998
[9]   On theory of minimal areas. [J].
Carleman, T .
MATHEMATISCHE ZEITSCHRIFT, 1921, 9 :154-159
[10]   Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds [J].
Cavalletti, Fabio ;
Mondino, Andrea .
INVENTIONES MATHEMATICAE, 2017, 208 (03) :803-849