Data-driven model predictive control design for offset-free tracking of nonlinear systems

被引:3
作者
Park, Byungjun [1 ]
Kim, Jong Woo [2 ]
Lee, Jong Min [1 ]
机构
[1] Seoul Natl Univ, Inst Chem Proc, Sch Chem & Biol Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Techn Univ Berlin, Chair Bioproc Engn, Str 17 Juni 135, D-10623 Berlin, Germany
基金
新加坡国家研究基金会;
关键词
Model predictive control; gap metric; linear time-varying model predictive control; differential dynamic programming; NUMERICAL-METHODS; STABILITY;
D O I
10.1080/00207179.2022.2051074
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a design of data-driven Model Predictive Control (MPC) using a suboptimal trajectory and the linear time-varying (LTV) models from data-driven trajectory optimisation that achieves offset-free tracking. Data-driven constrained differential dynamic programming (CDDP) is exploited to improve the trajectory iteratively without the knowledge of the nonlinear model. A trajectory is divided to the transient and steady state regions, controlled by the Linear time-varying MPC (LTVMPC) and the offset-free linear MPC (LMPC), respectively. We prove the feasibility of the proposed LTVMPC in the transient region, and the offset-free tracking property of LMPC. The proposed scheme is validated to a continuous stirred tank reactor (CSTR) process. Simulation studies show that the suboptimal trajectory and LTV models are generated by CDDP, and the proposed MPC achieves offset-free tracking and disturbance rejection for a set of initial conditions and set points in the operating region.
引用
收藏
页码:1408 / 1423
页数:16
相关论文
共 39 条
[11]  
Falcone P, 2007, IEEE DECIS CONTR P, P800
[12]   Costate approximation in optimal control using integral Gaussian quadrature orthogonal collocation methods [J].
Francolin, Camila C. ;
Benson, David A. ;
Hager, William W. ;
Rao, Anil V. .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2015, 36 (04) :381-397
[13]   Gap metric concept and implications for multilinear model-based controller design [J].
Galán, O ;
Romagnoli, JA ;
Palazoglu, A ;
Arkun, Y .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (10) :2189-2197
[14]   A design method for robust and quadratic optimal MIMO linear controllers [J].
Garcia-Alvarado, M. A. ;
Ruiz-Lopez, I. I. .
CHEMICAL ENGINEERING SCIENCE, 2010, 65 (11) :3431-3438
[15]   OPTIMAL ROBUSTNESS IN THE GAP METRIC [J].
GEORGIOU, TT ;
SMITH, MC .
PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, :2331-2336
[16]  
Jacobson D.H., 1968, Journal of Optimization Theory and Applications, V2, P411, DOI DOI 10.1007/BF00925746
[17]  
Jacobson D.H., 1970, Differential dynamic programming
[18]   Model-based reinforcement learning and predictive control for two-stage optimal control of fed-batch bioreactor [J].
Kim, Jong Woo ;
Park, Byung Jun ;
Oh, Tae Hoon ;
Lee, Jong Min .
COMPUTERS & CHEMICAL ENGINEERING, 2021, 154 (154)
[19]  
Kuure-Kinsey Matthew, 2007, 2007 American Control Conference, P3739, DOI 10.1109/ACC.2007.4283005
[20]   Multiple Model Predictive Control Strategy for Disturbance Rejection [J].
Kuure-Kinsey, Matthew ;
Bequette, B. Wayne .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (17) :7983-7989