Rational Electrochemical Design of Cuprous Oxide Hierarchical Microarchitectures and Their Derivatives for SERS Sensing Applications

被引:16
作者
An, Ning [1 ]
Chen, Tiantian [1 ]
Zhang, Junfeng [2 ]
Wang, Guanghui [3 ]
Yan, Mi [4 ,5 ]
Yang, Shikuan [1 ,5 ,6 ]
机构
[1] Zhejiang Univ, Inst Composites Sci Innovat, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[2] Shanxi Normal Univ, Sch Phys & Informat, Taiyuan 030031, Peoples R China
[3] Hubei Univ Automot Technol, Sch Automot Engn, Shiyan 442002, Peoples R China
[4] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[5] Baotou Res Inst Rare Earths, State Key Lab Baiyunobo Rare Earth Resource Res &, Baotou 014030, Peoples R China
[6] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Dept Med Oncol, Hangzhou 310003, Peoples R China
基金
中国国家自然科学基金;
关键词
cuprous oxide; electrodeposition; hierarchical structures; morphology control; surface-enhanced Raman spectroscopy; SHAPE-CONTROLLED SYNTHESIS; HIGH-INDEX FACETS; N-TYPE CU2O; QUANTITATIVE-ANALYSIS; CONTROLLED GROWTH; RAMAN-SCATTERING; NANOCRYSTALS; SILVER; GOLD; ELECTROOXIDATION;
D O I
10.1002/smtd.202300910
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rational morphology control of inorganic microarchitectures is important in diverse fields, requiring precise regulation of nucleation and growth processes. While wet chemical methods have achieved success regarding the shape-controlled synthesis of micro/nanostructures, accurately controlling the growth behavior in real time remains challenging. Comparatively, the electrodeposition technique can immediately control the growth behavior by tuning the overpotential, whereas it is rarely used to design complex microarchitectures. Here, the electrochemical design of complex Cu2O microarchitectures step-by-step by precisely controlling the growth behavior is demonstrated. The growth modes can be switched between the thermodynamic and kinetic modes by varying the overpotential. Cl- ions preferably adhered to {100} facets to modulate growth rates of these facets is proved. The discovered growth modes to prepare Cu2O microarchitectures composed of multiple building units inaccessible with existing methods are employed. Polyvinyl alcohol (PVA) additives can guarantee all pre-electrodeposits simultaneously evolve into uniform microarchitectures, instead of forming undesired microstructures on bare electrode surfaces in following electrodeposition processes is discovered. The designed Cu2O microarchitectures can be converted into noble metal microstructures with shapes unchanged, which can be used as surface-enhanced Raman scattering substrates. An electrochemical avenue toward rational design of complex inorganic microarchitectures is opened up. The electrodeposition technique can be used to design Cu2O hierarchical microarchitectures. Simply varying the overpotential induces the growth of a new building unit on the preformed ones, giving rise to the formation of complex hierarchical microarchitectures. Cl- ions are used to adjust growth rates of {100} facets, further strengthening the capability of the electrodeposition technique. image
引用
收藏
页数:10
相关论文
共 55 条
  • [1] Bard AJ., 1980, Electrochemical methods fundamentals and applications
  • [2] Boles MA, 2016, NAT MATER, V15, P141, DOI [10.1038/nmat4526, 10.1038/NMAT4526]
  • [3] Environment effects upon electrodeposition of thin film copper oxide nanomaterials
    Buckingham, Mark A.
    Xiao, Weichen
    Ward-O'Brien, Brendan
    Yearsley, Kathryn
    Zulfiqar, Usama
    F. Spencer, Ben
    Matthews, Allan
    Lewis, David J.
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (14) : 4876 - 4891
  • [4] Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces
    Chen, Chen
    Kang, Yijin
    Huo, Ziyang
    Zhu, Zhongwei
    Huang, Wenyu
    Xin, Huolin L.
    Snyder, Joshua D.
    Li, Dongguo
    Herron, Jeffrey A.
    Mavrikakis, Manos
    Chi, Miaofang
    More, Karren L.
    Li, Yadong
    Markovic, Nenad M.
    Somorjai, Gabor A.
    Yang, Peidong
    Stamenkovic, Vojislav R.
    [J]. SCIENCE, 2014, 343 (6177) : 1339 - 1343
  • [5] Formation of magnetic nanowire arrays by cooperative lateral growth
    Chen, Fei
    Yang, Zihao
    Li, Jing-Ning
    Jia, Fei
    Wang, Fan
    Zhao, Di
    Peng, Ru-Wen
    Wang, Mu
    [J]. SCIENCE ADVANCES, 2022, 8 (04)
  • [6] Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes
    Chen, Xiujuan
    Li, Wei
    Hu, Shanshan
    Akhmedov, Novruz G.
    Reed, David
    Li, Xiaolin
    Liu, Xingbo
    [J]. NANO ENERGY, 2022, 98
  • [7] Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment
    Chong, Yu
    Dai, Xing
    Fang, Ge
    Wu, Renfei
    Zhao, Lin
    Ma, Xiaochuan
    Tian, Xin
    Lee, Sangyun
    Zhang, Chao
    Chen, Chunying
    Chai, Zhifang
    Ge, Cuicui
    Zhou, Ruhong
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [8] Chlorine-Doped n-Type Cuprous Oxide Films Fabricated by Chemical Bath Deposition
    Ci, Ji-Wei
    Tu, Wei-Chen
    Uen, Wu-Yih
    Lan, Shan-Ming
    Zeng, Jia-Xian
    Yang, Tsun-Neng
    Shen, Chin-Chang
    Jhao, Jian-Chang
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) : D321 - D326
  • [9] Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction
    De Luna, Phil
    Quintero-Bermudez, Rafael
    Cao-Thang Dinh
    Ross, Michael B.
    Bushuyev, Oleksandr S.
    Todorovic, Petar
    Regier, Tom
    Kelley, Shana O.
    Yang, Peidong
    Sargent, Edward H.
    [J]. NATURE CATALYSIS, 2018, 1 (02): : 103 - 110
  • [10] Crystallization by particle attachment in synthetic, biogenic, and geologic environments
    De Yoreo, James J.
    Gilbert, Pupa U. P. A.
    Sommerdijk, Nico A. J. M.
    Penn, R. Lee
    Whitelam, Stephen
    Joester, Derk
    Zhang, Hengzhong
    Rimer, Jeffrey D.
    Navrotsky, Alexandra
    Banfield, Jillian F.
    Wallace, Adam F.
    Michel, F. Marc
    Meldrum, Fiona C.
    Coelfen, Helmut
    Dove, Patricia M.
    [J]. SCIENCE, 2015, 349 (6247)