Electrode Domain Adaptation Network: Minimizing the Difference Across Electrodes in Single-Source to Single-Target Motor Imagery Classification

被引:4
作者
Chen, Zhige [1 ,2 ]
Yang, Rui [1 ]
Huang, Mengjie [3 ]
Wang, Zidong [4 ]
Liu, Xiaohui [4 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China
[2] Univ Liverpool, Sch Elect Engn Elect & Comp Sci, Liverpool L693BX, England
[3] Xian Jiaotong Liverpool Univ, Design Sch, Suzhou 215123, Peoples R China
[4] Brunel Univ London, Dept Comp Sci, Uxbridge UB83PH, England
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2024年 / 8卷 / 02期
关键词
Electroencephalography; distribution difference minimization; electrode data distribution; electrode domain adaptation; motor imagery classification; single-source to single-target; EEG; BRAIN; VARIABILITY; ATLAS;
D O I
10.1109/TETCI.2024.3359097
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Because of electrode positioning error and brain nonlinear dynamics, the data distributions across electrodes are different in motor imagery (MI) study, eventually reducing the MI classification performance. In this paper, a novel inter-electrode data distribution problem is systematically illustrated and summarised for both intra-subject and inter-subject scenarios. To deal with the electrode data distribution difference problem, a novel electrode domain adaptation network (EDAN) is proposed, aiming to improve classification accuracy and enhance model robustness. Specifically, deep features by electrode from raw MI data are extracted by a specially designed spatial-temporal convolutional neural network (CNN). Then, with the customized intra-subject and inter-subject electrode loss functions, the electrode domain adaptation is conducted on the deep features to reduce the data distribution difference across electrodes. The comparison experiments and ablation studies of STS MI classification are conducted on a public EEG dataset to show the effectiveness of the proposed EDAN. The visualization of the deep features intuitively demonstrates the effectiveness of the electrode domain adaptation compared with global and class domain adaptations. The overall comparison results demonstrate the proposed EDAN can handle the inter-electrode difference and improve the classification accuracy compared with the other advanced deep learning and domain adaptation methods.
引用
收藏
页码:1994 / 2008
页数:15
相关论文
共 76 条
[1]   Decoding motor imagery from the posterior parietal cortex of a tetraplegic human [J].
Aflalo, Tyson ;
Kellis, Spencer ;
Klaes, Christian ;
Lee, Brian ;
Shi, Ying ;
Pejsa, Kelsie ;
Shanfield, Kathleen ;
Hayes-Jackson, Stephanie ;
Aisen, Mindy ;
Heck, Christi ;
Liu, Charles ;
Andersen, Richard A. .
SCIENCE, 2015, 348 (6237) :906-910
[2]   Julich-Brain: A 3D probabilistic atlas of the human brain's cytoarchitecture [J].
Amunts, Katrin ;
Mohlberg, Hartmut ;
Bludau, Sebastian ;
Zilles, Karl .
SCIENCE, 2020, 369 (6506) :988-+
[3]   Variability of electrode positions using electrode caps [J].
Atcherson, Samuel R. ;
Gould, Herbert Jay ;
Pousson, Monique A. ;
Prout, Tina M. .
BRAIN TOPOGRAPHY, 2007, 20 (02) :105-111
[4]   Weighted Transfer Learning for Improving Motor Imagery-Based Brain-Computer Interface [J].
Azab, Ahmed M. ;
Mihaylova, Lyudmila ;
Ang, Kai Keng ;
Arvaneh, Mahnaz .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (07) :1352-1359
[5]   An atlas of cortical arealization identifies dynamic molecular signatures [J].
Bhaduri, Aparna ;
Sandoval-Espinosa, Carmen ;
Otero-Garcia, Marcos ;
Oh, Irene ;
Yin, Raymund ;
Eze, Ugomma C. ;
Nowakowski, Tomasz J. ;
Kriegstein, Arnold R. .
NATURE, 2021, 598 (7879) :200-+
[6]   Motor imagery EEG decoding using manifold embedded transfer learning [J].
Cai, Yinhao ;
She, Qingshan ;
Ji, Jiyue ;
Ma, Yuliang ;
Zhang, Jianhai ;
Zhang, Yingchun .
JOURNAL OF NEUROSCIENCE METHODS, 2022, 370
[7]   Brain functional and effective connectivity based on electroencephalography recordings: A review [J].
Cao, Jun ;
Zhao, Yifan ;
Shan, Xiaocai ;
Wei, Hua-liang ;
Guo, Yuzhu ;
Chen, Liangyu ;
Erkoyuncu, John Ahmet ;
Sarrigiannis, Ptolemaios Georgios .
HUMAN BRAIN MAPPING, 2022, 43 (02) :860-879
[8]  
Chatrian G. E., 1985, American Journal of EEG Technology, V25, P83
[9]   Brain-computer interfaces for communication and rehabilitation [J].
Chaudhary, Ujwal ;
Birbaumer, Niels ;
Ramos-Murguialday, Ander .
NATURE REVIEWS NEUROLOGY, 2016, 12 (09) :513-525
[10]   Multiattention Adaptation Network for Motor Imagery Recognition [J].
Chen, Peiyin ;
Gao, Zhongke ;
Yin, Miaomiao ;
Wu, Jialing ;
Ma, Kai ;
Grebogi, Celso .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (08) :5127-5139