U-Former: COVID-19 lung infection segmentation based on convolutional neural network and transformer

被引:1
作者
Zhou, Tianyu [1 ]
Lian, Bobo [2 ]
Wu, Chenjian [1 ]
Chen, Hong [2 ]
Chen, Minxin [2 ]
机构
[1] Soochow Univ, Sch Elect & Informat Engn, Suzhou, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
U-Former; mixed module; multi-scale attention module; COVID-19; segmentation;
D O I
10.1117/1.JEI.33.1.013041
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The U-Former model is proposed in this work to segment the COVID-19 lung computed tomography images of patients. U-Former introduces the transformer architecture, based on the traditional U-Net segmentation network, which effectively improves the network's ability to capture global features. The mixed module is presented in this work to capture long-range dependencies and extract local information. In the mixed module, the computationally expensive self-attention mechanism is enhanced and combined with convolution to enable the network to efficiently capture global information while taking into account local details. The multi-scale attention module is utilized to fuse the multi-scale features to enhance the segmentation effect for details. Experimental results show that the proposed U-Former model outperforms other state-of-the-art segmentation models, including both convolutional neural network-based and transformer-based models, with a mean Dice score of 82.54%, a mean intersection over union of 80.01%, and a mean sensitivity of 85.70%. The code and models are publicly available at https://github.com/tianyuzhou668/U-Former
引用
收藏
页数:10
相关论文
共 30 条
[21]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[22]   MobileNetV2: Inverted Residuals and Linear Bottlenecks [J].
Sandler, Mark ;
Howard, Andrew ;
Zhu, Menglong ;
Zhmoginov, Andrey ;
Chen, Liang-Chieh .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4510-4520
[23]  
Schlemper J, 2019, Arxiv, DOI [arXiv:1808.08114, 10.48550/ARXIV.1808.08114]
[24]  
Wang S., 2021, EUR RADIOL, V31, P6096, DOI [DOI 10.1007/s00330-021-07715-1, 10.1007/s00330-021-07715-1, DOI 10.1007/S00330-021-07715-1]
[25]   Deep Parametric Continuous Convolutional Neural Networks [J].
Wang, Shenlong ;
Suo, Simon ;
Ma, Wei-Chiu ;
Pokrovsky, Andrei ;
Urtasun, Raquel .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2589-2597
[26]   Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions [J].
Wang, Wenhai ;
Xie, Enze ;
Li, Xiang ;
Fan, Deng-Ping ;
Song, Kaitao ;
Liang, Ding ;
Lu, Tong ;
Luo, Ping ;
Shao, Ling .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :548-558
[27]   Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study [J].
Wu, Joseph T. ;
Leung, Kathy ;
Leung, Gabriel M. .
LANCET, 2020, 395 (10225) :689-697
[28]   Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography [J].
Zhang, Kang ;
Liu, Xiaohong ;
Shen, Jun ;
Li, Zhihuan ;
Sang, Ye ;
Wu, Xingwang ;
Zha, Yunfei ;
Liang, Wenhua ;
Wang, Chengdi ;
Wang, Ke ;
Ye, Linsen ;
Gao, Ming ;
Zhou, Zhongguo ;
Li, Liang ;
Wang, Jin ;
Yang, Zehong ;
Cai, Huimin ;
Xu, Jie ;
Yang, Lei ;
Cai, Wenjia ;
Xu, Wenqin ;
Wu, Shaoxu ;
Zhang, Wei ;
Jiang, Shanping ;
Zheng, Lianghong ;
Zhang, Xuan ;
Wang, Li ;
Lu, Liu ;
Li, Jiaming ;
Yin, Haiping ;
Wang, Winston ;
Li, Oulan ;
Zhang, Charlotte ;
Liang, Liang ;
Wu, Tao ;
Deng, Ruiyun ;
Wei, Kang ;
Zhou, Yong ;
Chen, Ting ;
Lau, Johnson Yiu-Nam ;
Fok, Manson ;
He, Jianxing ;
Lin, Tianxin ;
Li, Weimin ;
Wang, Guangyu .
CELL, 2020, 181 (06) :1423-+
[29]   Automatic COVID-19 CT segmentation using U-Net integrated spatial and channel attention mechanism [J].
Zhou, Tongxue ;
Canu, Stephane ;
Ruan, Su .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (01) :16-27
[30]   UNet plus plus : A Nested U-Net Architecture for Medical Image Segmentation [J].
Zhou, Zongwei ;
Siddiquee, Md Mahfuzur Rahman ;
Tajbakhsh, Nima ;
Liang, Jianming .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018, 2018, 11045 :3-11