Interaction between an edge dislocation and a circular incompressible liquid inclusion

被引:7
作者
Wang, Xu [1 ,3 ]
Schiavone, Peter [2 ,4 ]
机构
[1] East China Univ Sci & Technol, Sch Mech & Power Engn, Shanghai, Peoples R China
[2] Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada
[3] East China Univ Sci & Technol, Sch Mech & Power Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
[4] Univ Alberta, Dept Mech Engn, 10-203 Donadeo Innovat Ctr Engn, Edmonton, AB T6G 1H9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Incompressible liquid inclusion; edge dislocation; closed-form solution; analytic continuation; image force on dislocation; Peach-Koehler formula;
D O I
10.1177/10812865231202445
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use Muskhelishvili's complex variable formulation to study the interaction problem associated with a circular incompressible liquid inclusion embedded in an infinite isotropic elastic matrix subjected to the action of an edge dislocation at an arbitrary position. A closed-form solution to the problem is derived largely with the aid of analytic continuation. We obtain, in explicit form, expressions for the internal uniform hydrostatic stresses, nonuniform strains and nonuniform rigid body rotation within the liquid inclusion; the hoop stress along the liquid-solid interface on the matrix side and the image force acting on the edge dislocation. We observe that (1) the internal strains and rigid body rotation within the liquid inclusion are independent of the elastic property of the matrix; (2) the internal hydrostatic stress field within the liquid inclusion is unaffected by Poisson's ratio of the matrix and is proportional to the shear modulus of the matrix; and (3) an unstable equilibrium position always exists for a climbing dislocation.
引用
收藏
页码:531 / 538
页数:8
相关论文
共 18 条
[11]  
Mura T., 2013, Micromechanics of defects in solids
[12]  
Muskhelishvili N. I., 1953, Some Basic Problems of the Mathematical Theory of Elasticity Fundamental Equations, Plane Theory of Elasticity, Torsion and Bending
[13]   Stiffening solids with liquid inclusions [J].
Style, Robert W. ;
Boltyanskiy, Rostislav ;
Allen, Benjamin ;
Jensen, Katharine E. ;
Foote, Henry P. ;
Wettlaufer, John S. ;
Dufresne, Eric R. .
NATURE PHYSICS, 2015, 11 (01) :82-87
[14]   Surface tension and the mechanics of liquid inclusions in compliant solids [J].
Style, Robert W. ;
Wettlaufer, John S. ;
Dufresne, Eric R. .
SOFT MATTER, 2015, 11 (04) :672-679
[15]   Cylindrical compressible liquid inclusion with surface effects [J].
Ti, Fei ;
Chen, Xin ;
Li, Moxiao ;
Sun, Xuechao ;
Liu, Shaobao ;
Lu, Tian Jian .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2022, 161
[16]  
Ting T. C. T., 1996, Anisotropic Elasticity: Theory and Applications
[17]   An elliptical liquid inclusion in an infinite elastic plane [J].
Wu, J. ;
Ru, C. Q. ;
Zhang, L. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2215)
[18]   A review of recent works on inclusions [J].
Zhou, Kun ;
Hoh, Hsin Jen ;
Wang, Xu ;
Keer, Leon M. ;
Pang, John H. L. ;
Song, Bin ;
Wang, Q. Jane .
MECHANICS OF MATERIALS, 2013, 60 :144-158