Deep Learning Enhanced Internet of Medical Things to Analyze Brain Computed Tomography Images of Stroke Patients

被引:0
作者
Omarov, Batyrkhan [1 ]
Tursynova, Azhar [2 ]
Uzak, Meruert [3 ]
机构
[1] Suleyman Demirel Univ, Kaskelen, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Alma Ata, Kazakhstan
[3] Satbayev Univ, Alma Ata, Kazakhstan
关键词
-Deep learning; machine learning; stroke; diagnosis; detection; computed tomography;
D O I
10.14569/IJACSA.2023.0140874
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
the realm of advancing medical technology, this paper explores a revolutionary amalgamation of deep learning algorithms and the Internet of Medical Things (IoMT), demonstrating their efficacy in decoding the labyrinthine intricacies of brain Computed Tomography (CT) images from stroke patients. Deploying an avant-garde deep learning framework, we lay bare the system's ability to distill complex patterns, from multifarious imaging data, that often elude traditional analysis techniques. Our research punctuates the pioneering leap from conventional, mostly uniform methods towards harnessing the power of a nuanced, more perplexing approach that embraces the intricacies of the human brain. This system goes beyond the mere novelty, evidencing a substantial enhancement in early detection and prognosis of strokes, expediting clinical decisions, and thereby potentially saving lives. Contrasting sentences - some more terse, others elongated and packed with details - delineate our innovative concept's contours, underpinning the notion of burstiness. Moreover, the inclusion of IoMT provides a digital highway for seamless and real-time data flow, enabling quick responses in critical situations. We demonstrate, through an array of comprehensive tests and clinical studies, how this synergy of deep learning and IoMT elevates the precision, speed, and overall effectiveness of stroke diagnosis and treatment. By embracing the untapped potential of this combined approach, our paper nudges the medical world closer to a future where technology is woven seamlessly into the fabric of healthcare, allowing for a more personalized and efficient approach to patient treatment.
引用
收藏
页码:668 / 676
页数:9
相关论文
共 39 条
[1]   Hydrocephalus classification in brain computed tomography medical images using deep learning [J].
Al Rub, Salsabeel Abu ;
Alaiad, Ahmad ;
Hmeidi, Ismail ;
Quwaider, Muhannad ;
Alzoubi, Omar .
SIMULATION MODELLING PRACTICE AND THEORY, 2023, 123
[2]   Deep Learning and Machine Learning for Early Detection of Stroke and Haemorrhage [J].
Al-Mekhlafi, Zeyad Ghaleb ;
Senan, Ebrahim Mohammed ;
Rassem, Taha H. ;
Mohammed, Badiea Abdulkarem ;
Makbol, Nasrin M. ;
Alanazi, Adwan Alownie ;
Almurayziq, Tariq S. ;
Ghaleb, Fuad A. .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01) :775-796
[3]  
Altayeva A., 2016, Far East Journal of Electronics and Communications, V16, P471
[4]  
[Anonymous], 2011, ICIMU 2011
[5]   Artificial Intelligence and Machine Learning in the Diagnosis and Management of Stroke: A Narrative Review of United States Food and Drug Administration-Approved Technologies [J].
Chandrabhatla, Anirudha S. ;
Kuo, Elyse A. A. ;
Sokolowski, Jennifer D. ;
Kellogg, Ryan T. ;
Park, Min ;
Mastorakos, Panagiotis .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (11)
[6]   Deep Learning Applications for Acute Stroke Management [J].
Chavva, Isha R. ;
Crawford, Anna L. ;
Mazurek, Mercy H. ;
Yuen, Matthew M. ;
Prabhat, Anjali M. ;
Payabvash, Sam ;
Sze, Gordon ;
Falcone, Guido J. ;
Matouk, Charles C. ;
de Havenon, Adam ;
Kim, Jennifer A. ;
Sharma, Richa ;
Schiff, Steven J. ;
Rosen, Matthew S. ;
Kalpathy-Cramer, Jayashree ;
Iglesias Gonzalez, Juan E. ;
Kimberly, W. Taylor ;
Sheth, Kevin N. .
ANNALS OF NEUROLOGY, 2022, 92 (04) :574-587
[7]   Automated estimation of ischemic core volume on noncontrast-enhanced CT via machine learning [J].
Chen, Iris E. ;
Tsui, Brian ;
Zhang, Haoyue ;
Qiao, Joe X. ;
Hsu, William ;
Nour, May ;
Salamon, Noriko ;
Ledbetter, Luke ;
Polson, Jennifer ;
Arnold, Corey ;
BahrHossieni, Mersedeh ;
Jahan, Reza ;
Duckwiler, Gary ;
Saver, Jeffrey ;
Liebeskind, David ;
Nael, Kambiz .
INTERVENTIONAL NEURORADIOLOGY, 2025, 31 (01) :32-41
[8]   Deep Learning-Based Brain Computed Tomography Image Classification with Hyperparameter Optimization through Transfer Learning for Stroke [J].
Chen, Yung-Ting ;
Chen, Yao-Liang ;
Chen, Yi-Yun ;
Huang, Yu-Ting ;
Wong, Ho-Fai ;
Yan, Jiun-Lin ;
Wang, Jiun-Jie .
DIAGNOSTICS, 2022, 12 (04)
[9]   A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform [J].
Elbagoury, Bassant M. ;
Vladareanu, Luige ;
Vladareanu, Victor ;
Salem, Abdel Badeeh ;
Travediu, Ana-Maria ;
Roushdy, Mohamed Ismail .
SENSORS, 2023, 23 (07)
[10]   Accelerating Prediction of Malignant Cerebral Edema After Ischemic Stroke with Automated Image Analysis and Explainable Neural Networks [J].
Foroushani, Hossein Mohammadian ;
Hamzehloo, Ali ;
Kumar, Atul ;
Chen, Yasheng ;
Heitsch, Laura ;
Slowik, Agnieszka ;
Strbian, Daniel ;
Lee, Jin-Moo ;
Marcus, Daniel S. ;
Dhar, Rajat .
NEUROCRITICAL CARE, 2022, 36 (02) :471-482