Understanding the effect of temperature and relative humidity on sensor sensitivities in field environments and improving the calibration models of multiple electrochemical carbon monoxide (CO) sensors in a tropical environment

被引:15
作者
Ariyaratne, Rajitha [1 ,5 ]
Elangasinghe, M. A. [1 ]
Zamora, M. Levy [2 ]
Karunaratne, D. G. G. P. [1 ]
Manipura, A. [1 ]
Jinadasa, K. B. S. N. [2 ,3 ]
Abayalath, K. H. N. [4 ]
机构
[1] Univ Peradeniya, Dept Chem & Proc Engn, Peradeniya 20400, Sri Lanka
[2] UConn Hlth, Dept Publ Hlth Sci, UConn Sch Med, 263 Farmington Ave,MC 6325, Farmington, CT 06030 USA
[3] Univ Peradeniya, Dept Civil Engn, Peradeniya 20400, Sri Lanka
[4] Univ Peradeniya, Dept Anim Sci, Peradeniya 20400, Sri Lanka
[5] Univ Moratuwa, Dept Mech Engn, Katubedda, Sri Lanka
关键词
Electrochemical sensors; Carbon monoxide; Sensor calibration; Sensor sensitivity; Linear regression; QUALITY MONITORING. PART; AIR-QUALITY; AVAILABLE SENSORS; POLLUTION; PERFORMANCE; CLUSTER;
D O I
10.1016/j.snb.2023.133935
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The data quality of low-cost air quality monitoring sensor systems in field environments needs to be improved through calibrations to compare with regulatory data. This research study focused on improving linear regression calibration models of multiple Alphasense CO-B4 sensors compared to the factory calibration, evaluating the sensor sensitivity and calibration model variations in different temperature and relative humidity (RH) ranges, evaluating the unit-to-unit variability of sensor performances and the use of averaged calibration models instead of individual calibration models. In this study, changes were observed in field sensor sensitivities and manufacturer-given sensor sensitivities, and the inclusion of field sensor sensitivities improved the calibration model performances significantly. Sensor calibration models performed best in the temperature range of 20-24 0C and the RH range of 75-90%, with averaged r and RMSE values around 0.98 and 50 ppb. When compared with raw sensor data (RMSE = 172.1 ppb), the averaged RMSE values of the calibrated concentration values were 97.4 ppb or below for different calibration models. Additionally, results clearly illustrated that the use of averaged calibration model was a reliable alternative for individual calibrations. Furthermore, it was observed that the field calibrations significantly reduce the effect of temperature and RH on sensor outputs and improve the factory calibrations.
引用
收藏
页数:13
相关论文
共 34 条
[1]  
[Anonymous], Carbon Monoxide Sensor MQ 7 - datasheet
[2]   Mitigation of particulate matters and integrated approach for carbon monoxide remediation in an urban environment [J].
Aslam, Afifa ;
Ibrahim, Muhammad ;
Mahmood, Abid ;
Mubashir, Muhammad ;
Sipra, Hassaan Fayyaz Khan ;
Shahid, Imran ;
Ramzan, Shahla ;
Latif, Mohd Talib ;
Tahir, Muhammad Yahya ;
Show, Pau Loke .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (04)
[3]   Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring Applications: A Review [J].
Baron, Ronan ;
Saffell, John .
ACS SENSORS, 2017, 2 (11) :1553-1566
[4]   Field calibration of a low-cost sensors network to assess traffic-related air pollution along the Brenner highway [J].
Bisignano, Andrea ;
Carotenuto, Federico ;
Zaldei, Alessandro ;
Giovannini, Lorenzo .
ATMOSPHERIC ENVIRONMENT, 2022, 275
[5]   Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise [J].
Borrego, C. ;
Costa, A. M. ;
Ginja, J. ;
Amorim, M. ;
Coutinho, M. ;
Karatzas, K. ;
Sioumis, Th. ;
Katsifarakis, N. ;
Konstantinidis, K. ;
De Vito, S. ;
Esposito, E. ;
Smith, P. ;
Andre, N. ;
Gerard, P. ;
Francis, L. A. ;
Castell, N. ;
Schneider, P. ;
Viana, M. ;
Minguillon, M. C. ;
Reimringer, W. ;
Otjes, R. P. ;
von Sicard, O. ;
Pohle, R. ;
Elen, B. ;
Suriano, D. ;
Pfister, V. ;
Prato, M. ;
Dipinto, S. ;
Penza, M. .
ATMOSPHERIC ENVIRONMENT, 2016, 147 :246-263
[6]   Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements [J].
Cross, Eben S. ;
Williams, Leah R. ;
Lewis, David K. ;
Magoon, Gregory R. ;
Onasch, Timothy B. ;
Kaminsky, Michael L. ;
Worsnop, Douglas R. ;
Jayne, John T. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (09) :3575-3588
[7]   Crowdsensing IoT Architecture for Pervasive Air Quality and Exposome Monitoring: Design, Development, Calibration, and Long-Term Validation [J].
De Vito, Saverio ;
Esposito, Elena ;
Massera, Ettore ;
Formisano, Fabrizio ;
Fattoruso, Grazia ;
Ferlito, Sergio ;
Del Giudice, Antonio ;
D'Elia, Gerardo ;
Salvato, Maria ;
Polichetti, Tiziana ;
D'Auria, Paolo ;
Ionescu, Adrian M. ;
Di Francia, Girolamo .
SENSORS, 2021, 21 (15)
[8]   Development of a GIS-based decision support system for urban air quality management in the city of Istanbul [J].
Elbir, Tolga ;
Mangir, Nizamettin ;
Kara, Melik ;
Simsir, Sedef ;
Eren, Tuba ;
Ozdemir, Seda .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (04) :441-454
[9]   Calibrations of Low-Cost Air Pollution Monitoring Sensors for CO, NO2, O3, and SO2 [J].
Han, Pengfei ;
Mei, Han ;
Liu, Di ;
Zeng, Ning ;
Tang, Xiao ;
Wang, Yinghong ;
Pan, Yuepeng .
SENSORS, 2021, 21 (01) :1-18
[10]  
Hasenfratz David, 2012, Wireless Sensor Networks. Proceedings 9th European Conference, EWSN 2012, P228, DOI 10.1007/978-3-642-28169-3_15