Optimization of a-Si Thin-Film Solar-Cell Performance with Passivation and c-Si Cap Layer

被引:0
作者
Verma, Manish [1 ]
Routray, Soumyaranjan [1 ]
Sahoo, Girija Shanker [2 ]
Mishra, Guru Prasad [3 ]
机构
[1] SRM Inst Sci & Technol, Dept Elect & Commun Engn, Chennai 603203, Tamil Nadu, India
[2] Vellore Inst Technol, Sch Elect Engn, Chennai 600127, Tamil Nadu, India
[3] Natl Inst Technol Raipur, Dept Elect & Commun Engn, GE Rd, Raipur 492010, Chhattisgarh, India
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2023年 / 220卷 / 18期
关键词
absorption; a-Si; crystalline silicon; high efficiency; passivation; thin films; ENHANCEMENT; DESIGN;
D O I
10.1002/pssa.202300213
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A modified design of the a-Si thin-film solar cell (TFSC) is presented. The c-Si cap layer is introduced to increase the photon absorption and hence the enhanced photo carriers increase the overall short-circuit current. Whereas, the highly doped a-Si passivation layer reduces the minority carrier flow and recombination at the rear side of the cell, and therefore the passivation layer is used to improve the open-circuit voltage ( V oc ). The performance optimization and investigation of the cell characteristic is executed using the numerical simulation methodology. To further enhance the cell efficiency, the thickness and doping concentration of the c-Si cap and a-Si passivation layer are optimized. The improvement in absorption and passivation quality of the cell leads to the enhancement of 10.54% in short-circuit current density and 71.51% improvement in the V oc , respectively. The designed a-Si TFSC absorbs the incoming solar spectrum from 300 to 850nm of wavelength and rest of the spectrum is transmitted. The external and internal quantum efficiency of the cell is well over 95% . The optimized efficiency of 15.33% is obtained for the designed cap layered a-Si passivated cell in AM1.5 G environment using ray-tracing methodology.
引用
收藏
页数:7
相关论文
共 32 条
  • [1] Environment-friendly copper-based chalcogenide thin film solar cells: status and perspectives
    Amrillah, Tahta
    Prasetio, Adi
    Supandi, Abdul Rohman
    Sidiq, David Hadid
    Putra, Fajar Sukamto
    Nugroho, Muhammad Adi
    Salsabilla, Zahra
    Azmi, Randi
    [J]. MATERIALS HORIZONS, 2023, 10 (02) : 313 - 339
  • [2] Design of Hyperbolic Metamaterial-Based Absorber Comprised of Ti Nanospheres
    Baqir, M. A.
    Choudhury, P. K.
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (10) : 735 - 738
  • [3] Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles
    Beck, F. J.
    Mokkapati, S.
    Catchpole, K. R.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2010, 18 (07): : 500 - 504
  • [4] Benagli S., 2009, 24th EU PVSEC, P21, DOI [10.4229/24thEUPVSEC2009-3BO.9.3, DOI 10.4229/24THEUPVSEC2009-3BO.9.3]
  • [5] Design principles for particle plasmon enhanced solar cells
    Catchpole, K. R.
    Polman, A.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (19)
  • [6] Chang C. H., 2011, P SPIE, V7933, p79332M
  • [7] Cutting sinusoidal gratings to enhance light trapping in thin-film silicon solar cells
    Chen, Ke
    He, Jinyang
    Zheng, Nianhong
    Wu, Sheng
    Zheng, Hongmei
    [J]. APPLIED OPTICS, 2023, 62 (03) : 688 - 696
  • [8] Micrometer-Thin Crystalline-Silicon Solar Cells Integrating Numerically Optimized 2-D Photonic Crystals
    Depauw, Valerie
    Meng, Xianqin
    El Daif, Ounsi
    Gomard, Guillaume
    Lalouat, Loic
    Drouard, Emmanuel
    Trompoukis, Christos
    Fave, Alain
    Seassal, Christian
    Gordon, Ivan
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (01): : 215 - 223
  • [9] Green MA, 1998, SOLAR CELLS OPERATIN
  • [10] Solar cell efficiency tables (Version 58)
    Green, Martin A.
    Dunlop, Ewan D.
    Hohl-Ebinger, Jochen
    Yoshita, Masahiro
    Kopidakis, Nikos
    Hao, Xiaojing
    [J]. PROGRESS IN PHOTOVOLTAICS, 2021, 29 (07): : 657 - 667