Single-Shell Multiple-Core MnO@C Hollow Carbon Nanospheres for Low-Temperature Lithium Storage

被引:10
作者
Dong, Shaowen [1 ,2 ]
Geng, Haitao [2 ]
Yue, Wence [2 ]
Zheng, Shumin [2 ]
Pang, Xiaowan [2 ]
Liang, Jie [1 ]
An, Gaojun [3 ]
Li, Wangliang [2 ]
Wang, Bao [2 ]
Lu, Changbo [3 ]
机构
[1] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China
[3] Acad Mil Sci, Syst Engn Inst, Beijing 100071, Peoples R China
基金
中国国家自然科学基金;
关键词
MnO@C@HCS nanocomposite; multiple-core; hollowstructure; low temperature; lithium-ion batteries; HIGH-PERFORMANCE ANODE; ION BATTERY; NANOPARTICLES; DESIGN; SPACE;
D O I
10.1021/acsaem.3c00814
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ionbatteries (LIBs) have been extensively employed ina range of electrical vehicles and portable devices in virtue of theirhigh energy density and stable cycle life. However, poor performanceunder low temperatures hinders their application in cold climatesand regions. Herein, single-shell (carbon) multiple-core (ultra-smallMnO@C nanoparticles) hollow carbon nanospheres (MnO@C@HCS) were preparedby a sacrificial template method, and MnO@C@HCS showed excellent low-temperatureelectrochemical performance. These MnO@C cores with large surfaceareas can shorten diffusion lengths of lithium ions and enhance diffusionrates along their rich grain boundaries, enabling rapid charging/discharging.The hollow carbon nanosphere with a porous shell can block seriousagglomeration of nanoparticles and regulate the amount of electrolytefilled in the hollow nanosphere to reduce side reactions between highlyactive electrode materials and electrolytes. The hollow structureformed between the core and the shell mitigates the volume expansionand contraction during cycling. The MnO@C@HCS anode exhibits highspecific capacities (1027 mAh g(-1) at 0.20 A g(-1)) and high rate performance (353 mAh g(-1) at 10.00 A g(-1)) under room temperature. Furthermore,the MnO@C@HCS anode maintains a satisfactory discharge capacity underlow temperatures (461 mAh g(-1) at 0.05 A g(-1) under -10 & DEG;C, 220 mAh g(-1) at 0.10A g(-1) under -20 & DEG;C, respectively). Thecontribution of pseudocapacitance to the capacity decreases as thetest temperature drops. Our strategy provides a design concept forthe high-performance anode for low-temperature lithium storage.
引用
收藏
页码:7877 / 7886
页数:10
相关论文
共 52 条
[1]   Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes [J].
Aravindan, Vanchiappan ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
ADVANCED ENERGY MATERIALS, 2015, 5 (13)
[2]   Lotus-Root-Like MnO/C Hybrids as Anode Materials for High Performance Lithium-Ion Batteries [J].
Cao, Zhaoxia ;
Shi, Mengjiao ;
Ding, Yanmin ;
Zhang, Jun ;
Wang, Zhichao ;
Dong, Hongyu ;
Yin, Yanhong ;
Yang, Shuting .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (05) :2546-2555
[3]   Constructing an interspace in MnO@NC microspheres for superior lithium ion battery anodes [J].
Chen, Feiran ;
Liu, Zheng ;
Yu, Nan ;
Sun, Hongxia ;
Geng, Baoyou .
CHEMICAL COMMUNICATIONS, 2021, 57 (83) :10951-10954
[4]   Embedding MnO@Mn3O4 Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage [J].
Chu, Yanting ;
Guo, Lingyu ;
Xi, Baojuan ;
Feng, Zhenyu ;
Wu, Fangfang ;
Lin, Yue ;
Liu, Jincheng ;
Sun, Di ;
Feng, Jinkui ;
Qian, Yitai ;
Xiong, Shenglin .
ADVANCED MATERIALS, 2018, 30 (06)
[5]   Metal Sulfide-Based Potassium-Ion Battery Anodes: Storage Mechanisms and Synthesis Strategies [J].
Du, Yichen ;
Zhang, Zhuangzhuang ;
Xu, Yifan ;
Bao, Jianchun ;
Zhou, Xiaosi .
ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (11)
[6]   Design and preparation of three-dimensional MnO/N-doped carbon nanocomposites based on waste biomass for high storage and ultra-fast transfer of lithium ions [J].
Feng, Qiaoxia ;
Li, Huanxin ;
Tan, Zhong ;
Huang, Zhongyuan ;
Jiang, Lanlan ;
Zhou, Haihui ;
Pan, Hongyu ;
Zhou, Qiang ;
Ma, Shuai ;
Kuang, Yafei .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (40) :19479-19487
[7]   Challenges and advances in wide-temperature rechargeable lithium batteries [J].
Feng, Yang ;
Zhou, Limin ;
Ma, Hua ;
Wu, Zhonghan ;
Zhao, Qing ;
Li, Haixia ;
Zhang, Kai ;
Chen, Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (05) :1711-+
[8]   Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes [J].
Gu, Xin ;
Yue, Jie ;
Chen, Liang ;
Liu, Shuo ;
Xu, Huayun ;
Yang, Jian ;
Qian, Yitai ;
Zhao, Xuebo .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (03) :1037-1041
[9]   Designing Advanced Lithium-Based Batteries for Low-Temperature Conditions [J].
Gupta, Abhay ;
Manthiram, Arumugam .
ADVANCED ENERGY MATERIALS, 2020, 10 (38)
[10]   Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between-40 and 60 °C [J].
Hou, Junbo ;
Yang, Min ;
Wang, Deyu ;
Zhang, Junliang .
ADVANCED ENERGY MATERIALS, 2020, 10 (18)