Boosting Mitochondrial Potential: An Imperative Therapeutic Intervention in Amyotrophic Lateral Sclerosis

被引:4
作者
Dhasmana, Swati [1 ,2 ]
Dhasmana, Anupam [1 ,2 ,3 ]
Kotnala, Sudhir [1 ,2 ]
Mangtani, Varsha [1 ]
Narula, Acharan S. [4 ]
Haque, Shafiul [5 ,6 ]
Jaggi, Meena [1 ,2 ]
Yallapu, Murali M. [1 ,2 ]
Chauhan, Subhash C. [1 ,2 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Med, Dept Immunol & Microbiol, Mcallen, TX 78504 USA
[2] Univ Texas Rio Grande Valley, South Texas Ctr Excellence Canc Res, Sch Med, Mcallen, TX 78504 USA
[3] Swami Rama Himalayan Univ, Himalayan Sch Biosci, Dehra Dun, India
[4] Narula Res LLC, 107 Boulder Bluff, Chapel Hili, NC 27516 USA
[5] Jazan Univ, Coll Nursing & Allied Hlth Sci, Res & Sci Studies Unit, Jazan 45142, Saudi Arabia
[6] Ajman Univ, Ctr Med & Bioallied Hlth Sci Res, Ajman, U Arab Emirates
关键词
ALS; mitochondrial dysfunction; neurodegeneration; ROS in ALS; excitotoxicity; mitochondrial biogenesis; mitochondrial reactivation; CELLULAR STRESS-RESPONSE; MOUSE MODEL; OXIDATIVE STRESS; VAPB-PTPIP51; INTERACTION; DISEASE PROGRESSION; TDP-43; PATHOLOGY; NERVOUS-SYSTEM; COENZYME Q(10); MOTOR-NEURONS; GENE-THERAPY;
D O I
10.2174/1570159X20666220915092703
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Amyotrophic Lateral Sclerosis (ALS) is a progressive and terminal neurodegenerative disorder. Mitochondrial dysfunction, imbalance of cellular bioenergetics, electron chain transportation and calcium homeostasis are deeply associated with the progression of this disease. Impaired mitochondrial functions are crucial in rapid neurodegeneration. The mitochondria of ALS patients are associated with deregulated Ca2+ homeostasis and elevated levels of reactive oxygen species (ROS), leading to oxidative stress. Overload of mitochondrial calcium and ROS production leads to glutamate-receptor mediated neurotoxicity. This implies mitochondria are an attractive therapeutic target. Objective: The aim of this review is to brief the latest developments in the understanding of mitochondrial pathogenesis in ALS and emphasize the restorative capacity of therapeutic candidates. Results: In ALS, mitochondrial dysfunction is a well-known phenomenon. Various therapies targeted towards mitochondrial dysfunction aim at decreasing ROS generation, increasing mitochondrial biogenesis, and inhibiting apoptotic pathways. Some of the therapies briefed in this review may be categorized as synthetic, natural compounds, genetic materials, and cellular therapies. Conclusion: The overarching goals of mitochondrial therapies in ALS are to benefit ALS patients by slowing down the disease progression and prolonging overall survival. Despite various therapeutic approaches, there are many hurdles in the development of a successful therapy due to the multifaceted nature of mitochondrial dysfunction and ALS progression. Intensive research is required to precisely elucidate the molecular pathways involved in the progression of mitochondrial dysfunctions that ultimately lead to ALS. Because of the multifactorial nature of ALS, a combination therapy approach may hold the key to cure and treat ALS in the future.
引用
收藏
页码:1117 / 1138
页数:22
相关论文
共 178 条
[1]   Novel Nrf2-Inducer Prevents Mitochondrial Defects and Oxidative Stress in Friedreich's Ataxia Models [J].
Abeti, Rosella ;
Baccaro, Annalisa ;
Esteras, Noemi ;
Giunti, Paola .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2018, 12
[2]   Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes [J].
Agarwal, Amit ;
Wu, Pei-Hsun ;
Hughes, Ethan G. ;
Fukaya, Masahiro ;
Tischfield, Max A. ;
Langseth, Abraham J. ;
Wirtz, Denis ;
Bergles, Dwight E. .
NEURON, 2017, 93 (03) :587-+
[3]   Safety and Efficacy of Nanocurcumin as Add-On Therapy to Riluzole in Patients With Amyotrophic Lateral Sclerosis: A Pilot Randomized Clinical Trial [J].
Ahmadi, Mona ;
Agah, Elmira ;
Nafissi, Shahriar ;
Jaafari, Mahmoud Reza ;
Harirchian, Mohammad Hossein ;
Sarraf, Payam ;
Faghihi-Kashani, Sara ;
Hosseini, Seyed Jalal ;
Ghoreishi, Abdolreza ;
Aghamollaii, Vajiheh ;
Hosseini, Mostafa ;
Tafakhori, Abbas .
NEUROTHERAPEUTICS, 2018, 15 (02) :430-438
[4]   A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis [J].
Al-Saif, Amr ;
Al-Mohanna, Futwan ;
Bohlega, Saeed .
ANNALS OF NEUROLOGY, 2011, 70 (06) :913-919
[5]  
Alexeyev MF, 2008, GENE THER, V15, P516, DOI [10.1038/gt.2008.11, 10.1038/sj.gt.2008.11]
[6]   C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis [J].
Allen, Scott P. ;
Hall, Benjamin ;
Woof, Ryan ;
Francis, Laura ;
Gatto, Noemi ;
Shaw, Allan C. ;
Myszczynska, Monika ;
Hemingway, Jordan ;
Coldicott, Ian ;
Willcock, Amelia ;
Job, Lucy ;
Hughes, Rachel M. ;
Boschian, Camilla ;
Bayatti, Nadhim ;
Heath, Paul R. ;
Bandmann, Oliver ;
Mortiboys, Heather ;
Ferraiuolo, Laura ;
Shaw, Pamela J. .
BRAIN, 2019, 142 :3771-3790
[7]  
Appel S H, 2011, Acta Myol, V30, P4
[8]   Clipping or Extracting: Two Ways to Membrane Protein Degradation [J].
Avci, Doenem ;
Lemberg, Marius K. .
TRENDS IN CELL BIOLOGY, 2015, 25 (10) :611-622
[9]   A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement [J].
Bannwarth, Sylvie ;
Ait-El-Mkadem, Samira ;
Chaussenot, Annabelle ;
Genin, Emmanuelle C. ;
Lacas-Gervais, Sandra ;
Fragaki, Konstantina ;
Berg-Alonso, Laetitia ;
Kageyama, Yusuke ;
Serre, Valerie ;
Moore, David G. ;
Verschueren, Annie ;
Rouzier, Cecile ;
Le Ber, Isabelle ;
Auge, Gaelle ;
Cochaud, Charlotte ;
Lespinasse, Francoise ;
N'Guyen, Karine ;
de Septenville, Anne ;
Brice, Alexis ;
Yu-Wai-Man, Patrick ;
Sesaki, Hiromi ;
Pouget, Jean ;
Paquis-Flucklinger, Veronique .
BRAIN, 2014, 137 :2329-2345
[10]   L-Arginine Reduces Nitro-Oxidative Stress in Cultured Cells with Mitochondrial Deficiency [J].
Barros, Camila D. S. ;
Livramento, Jomenica B. ;
Mouro, Margaret G. ;
Higa, Elisa Mieko Suemitsu ;
Moraes, Carlos T. ;
Tengan, Celia Harumi .
NUTRIENTS, 2021, 13 (02) :1-13