Bipolar Thermoelectricity in Bilayer-Graphene-Superconductor Tunnel Junctions

被引:6
作者
Bernazzani, L. [1 ,2 ]
Marchegiani, G. [3 ]
Giazotto, F. [4 ]
Roddaro, S. [1 ,4 ]
Braggio, A. [4 ]
机构
[1] Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy
[2] Univ Konstanz, Fachbereich Phys, D-78457 Constance, Germany
[3] Technol Innovat Inst, Quantum Res Ctr, POB 9639, Abu Dhabi, U Arab Emirates
[4] Ist Nanosci CNR & Scuola Normale Super, NEST, I-56127 Pisa, Italy
来源
PHYSICAL REVIEW APPLIED | 2023年 / 19卷 / 04期
关键词
THERMOPOWER; STATE; HEAT;
D O I
10.1103/PhysRevApplied.19.044017
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the thermoelectric properties of a hybrid nanodevice composed of a two-dimensional carbon-based material and a superconductor. This system presents nonlinear bipolar thermoelectricity, as induced by the spontaneous breaking of the particle-hole (PH) symmetry in a tunnel junction between bilayer graphene (BLG) and a Bardeen-Cooper-Schrieffer superconductor. In this scheme, the nonlinear thermoelectric effect, predicted and observed in superconductor-insulator-superconductor' junctions, is not affected by the competitive effect of the Josephson coupling. From a fundamental perspective, the most intriguing feature of this effect is its bipolarity. The capability to open and control the BLG gap guaran-tees improved thermoelectric performances that reach up to 1 mV/K, regarding the Seebeck coefficient, and a power density of 1 nW/mu m2 for temperature gradients of tens of kelvin. Furthermore, the exter-nally controlled gating can also dope the BLG, which is otherwise intrinsically PH symmetric, giving us the opportunity to investigate the bipolar thermoelectricity, even in the presence of the controlled sup-pression of the PH symmetry. The predicted robustness of this system could foster further experimental investigations and applications in the near future, thanks to the available nanofabrication techniques.
引用
收藏
页数:10
相关论文
共 73 条
[21]   Quasiparticle injection-detection experiments in niobium [J].
Gijsbertsen, JG ;
Flokstra, J .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (07) :3923-3933
[22]  
Ginzburg V. L., 1991, Soviet Physics - Uspekhi, V34, P101, DOI 10.1070/PU1991v034n02ABEH002338
[23]  
Grosso G., 2000, Solid State Physics
[24]   Temperature-Biased Double-Loop Josephson Flux Transducer [J].
Guarcello, C. ;
Citro, R. ;
Giazotto, F. ;
Braggio, A. .
PHYSICAL REVIEW APPLIED, 2022, 18 (01)
[25]   Josephson-Threshold Calorimeter [J].
Guarcello, Claudio ;
Braggio, Alessandro ;
Solinas, Paolo ;
Pepe, Giovanni Piero ;
Giazotto, Francesco .
PHYSICAL REVIEW APPLIED, 2019, 11 (05)
[26]   Thermoelectric Radiation Detector Based on Superconductor-Ferromagnet Systems [J].
Heikkila, T. T. ;
Ojajarvi, R. ;
Maasilta, I. J. ;
Strambini, E. ;
Giazotto, F. ;
Bergeret, F. S. .
PHYSICAL REVIEW APPLIED, 2018, 10 (03)
[27]   Nonlocal thermoelectricity in a Cooper-pair splitter [J].
Hussein, Robert ;
Governale, Michele ;
Kohler, Sigmund ;
Belzig, Wolfgang ;
Giazotto, Francesco ;
Braggio, Alessandro .
PHYSICAL REVIEW B, 2019, 99 (07)
[28]   Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene [J].
Icking, Eike ;
Banszerus, Luca ;
Woertche, Frederike ;
Volmer, Frank ;
Schmidt, Philipp ;
Steiner, Corinne ;
Engels, Stephan ;
Hesselmann, Jonas ;
Goldsche, Matthias ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Volk, Christian ;
Beschoten, Bernd ;
Stampfer, Christoph .
ADVANCED ELECTRONIC MATERIALS, 2022, 8 (11)
[29]   Coherent thermoelectric effects in mesoscopic Andreev interferometers [J].
Jacquod, Ph. ;
Whitney, Robert S. .
EPL, 2010, 91 (06)
[30]   Quantitative measurements of the thermal resistance of Andreev interferometers [J].
Jiang, Z ;
Chandrasekhar, V .
PHYSICAL REVIEW B, 2005, 72 (02)