Role of chemical potential at kinetic freeze-out using Tsallis non-extensive statistics in proton-proton collisions at the Large Hadron Collider

被引:4
作者
Pradhan, Girija Sankar [1 ]
Sahu, Dushmanta [1 ]
Rath, Rutuparna [2 ]
Sahoo, Raghunath [1 ]
Cleymans, Jean [3 ,4 ]
机构
[1] Indian Inst Technol Indore, Dept Phys, Khandwa Rd, Indore 453552, India
[2] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, BO, Italy
[3] Univ Cape Town, UCT CERN Res Ctr, ZA-7701 Rondebosch, South Africa
[4] Univ Cape Town, Phys Dept, ZA-7701 Rondebosch, South Africa
关键词
TRANSVERSE-MOMENTUM DISTRIBUTIONS; QCD; NONEXTENSIVITY; TEMPERATURE; DEPENDENCE; SPECTRA; MATTER;
D O I
10.1140/epja/s10050-024-01270-1
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The charged-particle transverse momentum spectra (pT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\textrm{T}$$\end{document}-spectra) measured by the ALICE collaboration for pp collisions at s=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} =$$\end{document} 7 and 13 TeV have been studied using a thermodynamically consistent form of Tsallis non-extensive statistics. The Tsallis distribution function is fitted to the pT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{\textrm{T}}$$\end{document}-spectra and the results are analyzed as a function of final state charged-particle multiplicity for various light flavor and strange particles, such as pi +/-,K +/-,p+p over bar ,phi,Lambda+Lambda over bar ,Xi+Xi over bar ,omega+omega over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi <^>{\pm }, K<^>{\pm }, p+\bar{p}, \phi , \Lambda +\bar{\Lambda }, \Xi +\bar{\Xi }, \Omega +\bar{\Omega }$$\end{document}. At the LHC energies, particles and antiparticles are produced in equal numbers. However, the equality of particle and antiparticle yields at the kinetic freeze-out may imply that they have the same but opposite chemical potential which is not necessarily zero. We use an alternative procedure that makes use of parameter redundancy, by introducing a finite chemical potential at the kinetic freeze-out stage. This article emphasizes the importance of the chemical potential of the system produced in pp collisions at the LHC energies using the Tsallis distribution function which brings the system to a single freeze-out scenario.
引用
收藏
页数:14
相关论文
共 86 条
  • [1] Aad G., 2011, ATLAS New J. Phys, V13, DOI [10.1088/1367-2630/13/5/053033, DOI 10.1088/1367-2630/13/5/053033]
  • [2] Aamodt K, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1655-9
  • [3] Femtoscopy of pp collisions at √s=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations
    Aamodt, K.
    Abrahantes Quintana, A.
    Adamova, D.
    Adare, A. M.
    Aggarwal, M. M.
    Rinella, G. Aglieri
    Agocs, A. G.
    Salazar, S. Aguilar
    Ahammed, Z.
    Ahmad, N.
    Masoodi, A. Ahmad
    Ahn, S. U.
    Akindinov, A.
    Aleksandrov, D.
    Alessandro, B.
    Alfaro Molina, R.
    Alici, A.
    Alkin, A.
    Almaraz Avina, E.
    Alt, T.
    Altini, V.
    Altinpinar, S.
    Altsybeev, I.
    Andrei, C.
    Andronic, A.
    Anguelov, V.
    Anson, C.
    Anticic, T.
    Antinori, F.
    Antonioli, P.
    Aphecetche, L.
    Appelshaeuser, H.
    Arbor, N.
    Arcelli, S.
    Arend, A.
    Armesto, N.
    Arnaldi, R.
    Aronsson, T.
    Arsene, I. C.
    Asryan, A.
    Augustinus, A.
    Averbeck, R.
    Awes, T. C.
    Aysto, J.
    Azmi, M. D.
    Bach, M.
    Badala, A.
    Baek, Y. W.
    Bagnasco, S.
    Bailhache, R.
    [J]. PHYSICAL REVIEW D, 2011, 84 (11):
  • [4] Two-pion Bose-Einstein correlations in pp collisions at √s=900 GeV
    Aamodt, K.
    Abel, N.
    Abeysekara, U.
    Quintana, A. Abrahantes
    Abramyan, A.
    Adamova, D.
    Aggarwal, M. M.
    Rinella, G. Aglieri
    Agocs, A. G.
    Salazar, S. Aguilar
    Ahammed, Z.
    Ahmad, A.
    Ahmad, N.
    Ahn, S. U.
    Akimoto, R.
    Akindinov, A.
    Aleksandrov, D.
    Alessandro, B.
    Molina, R. Alfaro
    Alici, A.
    Avina, E. Almaraz
    Alme, J.
    Alt, T.
    Altini, V.
    Altinpinar, S.
    Andrei, C.
    Andronic, A.
    Anelli, G.
    Angelov, V.
    Anson, C.
    Anticic, T.
    Antinori, F.
    Antinori, S.
    Antipin, K.
    Antonczyk, D.
    Antonioli, P.
    Anzo, A.
    Aphecetche, L.
    Appelshaeuser, H.
    Arcelli, S.
    Arceo, R.
    Arend, A.
    Armesto, N.
    Arnaldi, R.
    Aronsson, T.
    Arsene, I. C.
    Asryan, A.
    Augustinus, A.
    Averbeck, R.
    Awes, T. C.
    [J]. PHYSICAL REVIEW D, 2010, 82 (05):
  • [5] Abelev B., 2012, ALICE Collab. Phys. Lett. B, V717, P162, DOI [10.1016/j.physletb.2012.09.015, DOI 10.1016/J.PHYSLETB.2012.09.015]
  • [6] Abelev B., 2012, ALICE Collab. Phys. Lett. B, V712, P309, DOI [10.1016/j.physletb.2012.05.011, DOI 10.1016/J.PHYSLETB.2012.05.011]
  • [7] Abelev BI., 2007, STAR Collab. Phys. Rev. C, V75, DOI [10.1103/PhysRevC.75.064901, DOI 10.1103/PHYSREVC.75.064901]
  • [8] Acharya S, 2020, EUR PHYS J C, V80, DOI 10.1140/epjc/s10052-020-8125-1
  • [9] Acharya S, 2020, EUR PHYS J C, V80, DOI 10.1140/epjc/s10052-020-7673-8
  • [10] Acharya S., 2019, ALICE Phys. Rev. C, V99, DOI [10.1103/PhysRevC.99.024906, DOI 10.1103/PHYSREVC.99.024906]