Topological Properties of Mappings with Finite Distortion on Carnot Groups

被引:0
作者
Isangulova, D. V. [1 ]
机构
[1] Novosibirsk State Univ, Novosibirsk, Russia
关键词
Carnot group; mapping with finite distortion; quasilightness; openness; discreteness; 517.54; BOUNDED DISTORTION; DIFFERENTIABILITY; SPACES;
D O I
10.1134/S0037446624010063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every mapping with finite distortion on a Carnot group is open and discrete provided that it is quasilight and the distortion coefficient is integrable. Also, we estimate the Hausdorff dimension of the preimages of points for mappings on a Carnot group with a bounded multiplicity function and summable distortion coefficient. Furthermore, we give some example showing that the obtained estimates cannot be improved.
引用
收藏
页码:48 / 61
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 2000, P AN GEOM SOB I MATH
[2]   POINTWISE DIFFERENTIABILITY AND ABSOLUTE CONTINUITY [J].
BAGBY, T ;
ZIEMER, WP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 191 (464) :129-148
[4]   Openness and Discreteness of Mappings of Finite Distortion on Carnot Groups [J].
Basalaev, S. G. ;
Vodopyanov, S. K. .
SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (06) :1289-1296
[5]  
Folland G.B., 1982, Hardy spaces on homogeneous groups. Mathematical notes volume 28
[6]   Mappings of finite distortion: Hausdorff measure of zero sets [J].
Hencl, S ;
Maly, J .
MATHEMATISCHE ANNALEN, 2002, 324 (03) :451-464
[7]  
Isangulova DV, 2010, EURASIAN MATH J, V1, P58
[8]   ON MAPPINGS WITH INTEGRABLE DILATION [J].
IWANIEC, T ;
SVERAK, V .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (01) :181-188
[9]   ROTATION AND STRAIN [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1961, 14 (03) :391-&
[10]  
Kleiner B, 2021, Arxiv, DOI arXiv:2007.06694