A review of the strategies used to produce different networks in cellulose-based hydrogels

被引:13
|
作者
Estevam, Bianca Ramos [1 ]
Perez, Isadora Dias [1 ]
Moraes, Angela Maria [2 ]
Fregolente, Leonardo Vasconcelos [1 ]
机构
[1] Univ Campinas UNICAMP, Dept Proc & Prod Design, Sch Chem Engn, BR-13083852 Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Bioproc Sch Chem Engn, Dept Engn Mat, BR-13083852 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Double crosslinking; Interpenetrating polymeric network; Double-network; Grafting; Composite hydrogels; CARBOXYMETHYL CELLULOSE; CROSS-LINKING; HYDROXYETHYL CELLULOSE; HIGH-STRENGTH; POLYMERIZATION; NANOCRYSTALS; FABRICATION; COMPOSITES; ADSORPTION; TOUGHNESS;
D O I
10.1016/j.mtchem.2023.101803
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymeric hydrogels are crosslinked networks that form three-dimensional materials, offering unique tailored properties and diverse applications. Cellulose is a natural biopolymer abundant in hydroxyl groups, which holds great potential for hydrogel synthesis via chemical and physical crosslinking. Cellulose-based hydrogels possess potential advantageous characteristics, which enable their use in several fields, such as environmental, medical, agriculture, and most recently in energy fields. Nevertheless, challenges related to mechanical properties and degradation of these polymers persist. To address these limitations, the incorporation of multiple networks in cellulose hydrogels has been explored, combining the desirable features of each type of network to enhance overall performance. Hydrogels can be classified into various types of networks, including single crosslinking (physical or chemical), double-crosslinked hydrogels, grafted hydrogels, semi-interpenetrating polymeric networks (semi-IPN), and interpenetrating polymeric networks (IPN). Exploring the different network types that a hydrogel can form is a way to improve its characteristics regarding mechanical properties, temperature stability, morphological structure, stimuli-responsive behavior, and swelling and release kinetics of active compounds incorporated in it. The intricate nature of interactions within cellulose hydrogels poses a challenge to grasping the nuanced differences in strategies employed to create each unique network. Therefore, this manuscript elucidates the differences between the main types of networks that can be created in cellulose hydrogels, their synthesis methods, benefits, and limitations, serving as a valuable resource to guide future research about cellulose-based hydrogels.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Mechanical properties of cellulose-based multiscale composites: A review
    Ganapathy, Viswanath
    Muthukumaran, Gunasegeran
    Sudhagar, P. Edwin
    Rashedi, Ahmad
    Norrrahim, Mohd Nor Faiz
    Ilyas, Rushdan Ahmad
    Goh, Kheng Lim
    Jawaid, Mohammad
    Naveen, Jesuarockiam
    POLYMER COMPOSITES, 2023, 44 (02) : 734 - 756
  • [32] Cellulose-based nanomaterials for water and wastewater treatments: A review
    Sayyed, Anwar J.
    Pinjari, Dipak, V
    Sonawane, Shirish H.
    Bhanvase, Bharat A.
    Sheikh, Javed
    Sillanpaa, Mika
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (06):
  • [33] Highly Stretchable, Strain-Sensitive, and Ionic-Conductive Cellulose-Based Hydrogels for Wearable Sensors
    Tong, Ruiping
    Chen, Guangxue
    Tian, Junfei
    He, Minghui
    POLYMERS, 2019, 11 (12)
  • [34] Functional cellulose-based hydrogels as extracellular matrices for tissue engineering
    Dutta, Sayan Deb
    Patel, Dinesh K.
    Lim, Ki-Taek
    JOURNAL OF BIOLOGICAL ENGINEERING, 2019, 13 (1)
  • [35] Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid
    Demitri, Christian
    Del Sole, Roberta
    Scalera, Francesca
    Sannino, Alessandro
    Vasapollo, Giuseppe
    Maffezzoli, Alfonso
    Ambrosio, Luigi
    Nicolais, Luigi
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 110 (04) : 2453 - 2460
  • [36] A comprehensive review on cellulose-based hydrogel and its potential application in the food industry
    Thivya, P.
    Akalya, S.
    Sinija, V. R.
    APPLIED FOOD RESEARCH, 2022, 2 (02):
  • [37] Superabsorbent cellulose-based hydrogels cross-liked with borax
    Tanpichai, Supachok
    Phoothong, Farin
    Boonmahitthisud, Anyaporn
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [38] Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels
    Chen, Yong Mei
    Sun, Lei
    Yang, Shao An
    Shi, Lei
    Zheng, Wen Jiang
    Wei, Zhao
    Hu, Chen
    EUROPEAN POLYMER JOURNAL, 2017, 94 : 501 - 510
  • [39] Dynamics in Cellulose-Based Hydrogels with Reversible Cross-Links
    Shao, Changyou
    Yang, Jun
    SELF-HEALING AND SELF-RECOVERING HYDROGELS, 2020, 285 : 319 - 354
  • [40] Removal strategies for endocrine disrupting chemicals using cellulose-based materials as adsorbents: A review
    Tapia-Orozco, Natalia
    Ibarra-Cabrera, Ricardo
    Tecante, Alberto
    Gimeno, Miquel
    Parra, Roberto
    Garcia-Arrazola, Roeb
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2016, 4 (03): : 3122 - 3142