Graph Contrastive Partial Multi-View Clustering

被引:22
|
作者
Wang, Yiming [1 ,2 ]
Chang, Dongxia [1 ,2 ]
Fu, Zhiqiang [1 ,2 ]
Wen, Jie [3 ]
Zhao, Yao [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China
[3] Harbin Inst Technol, Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Kernel; Clustering methods; Generative adversarial networks; Task analysis; Semantics; Representation learning; Media; Contrastive learning; multi-view learning; partial multi-view clustering;
D O I
10.1109/TMM.2022.3210376
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the diversity of information acquisition, data is stored and transmitted in an increasing number of modalities. Nevertheless, it is not unusual for parts of the data to be lost in some views due to unavoidable acquisition, transmission or storage errors. In this paper, we propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering. Notably, we suppose that the representations of similar samples (i.e., belonging to the same cluster) should be similar. This is distinct from the general unsupervised contrastive learning that assumes an image and its augmentations share a similar representation. Specifically, relation graphs are constructed using the nearest neighbors to identify existing similar samples, then the constructed inter-instance relation graphs are transferred to the missing views to build graphs on the corresponding missing data. Subsequently, two main components, within-view graph contrastive learning and cross-view graph consistency learning, are devised to maximize the mutual information of different views within a cluster. The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering. Experiments on several challenging datasets demonstrate the superiority of our proposed methods.
引用
收藏
页码:6551 / 6562
页数:12
相关论文
共 50 条
  • [11] Bipartite Graph Based Multi-View Clustering
    Li, Lusi
    He, Haibo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3111 - 3125
  • [12] Consensus Graph Learning for Multi-View Clustering
    Li, Zhenglai
    Tang, Chang
    Liu, Xinwang
    Zheng, Xiao
    Zhang, Wei
    Zhu, En
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2461 - 2472
  • [13] Dual contrastive learning for multi-view clustering
    Bao, Yichen
    Zhao, Wenhui
    Zhao, Qin
    Gao, Quanxue
    Yang, Ming
    NEUROCOMPUTING, 2024, 599
  • [14] Heterogeneous Graph Contrastive Multi-view Learning
    Wang, Zehong
    Li, Qi
    Yu, Donghua
    Han, Xiaolong
    Gao, Xiao-Zhi
    Shen, Shigen
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 136 - 144
  • [15] Subspace-Contrastive Multi-View Clustering
    Fu, Lele
    Huang, Sheng
    Zhang, Lei
    Yang, Jinghua
    Zheng, Zibin
    Zhang, Chuanfu
    Chen, Chuan
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (09)
  • [16] DCMVC: Dual contrastive multi-view clustering
    Li, Pengyuan
    Chang, Dongxia
    Kong, Zisen
    Wang, Yiming
    Zhao, Yao
    NEUROCOMPUTING, 2025, 635
  • [17] Multi-View Comprehensive Graph Clustering
    Mei, Yanying
    Ren, Zhenwen
    Wu, Bin
    Yang, Tao
    Shao, Yanhua
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3279 - 3288
  • [18] Multi-view Contrastive Clustering with Clustering Guidance and Adaptive Auto-encoders
    Guo, Bingchen
    Kong, Bing
    Zhou, Lihua
    Chen, Hongmei
    Bao, Chongming
    SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2024, 2024, 14619 : 3 - 14
  • [19] Refining Graph Structure for Incomplete Multi-View Clustering
    Li, Xiang-Long
    Chen, Man-Sheng
    Wang, Chang-Dong
    Lai, Jian-Huang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2300 - 2313
  • [20] GMC: Graph-Based Multi-View Clustering
    Wang, Hao
    Yang, Yan
    Liu, Bing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (06) : 1116 - 1129