High-order spectral collocation method using tempered fractional Sturm-Liouville eigenproblems

被引:2
|
作者
Dahy, Sayed A. [1 ]
El-Hawary, H. M. [1 ]
Fahim, Alaa [1 ]
Aboelenen, Tarek [1 ,2 ]
机构
[1] Assiut Univ, Fac Sci, Math Dept, Assiut 71516, Egypt
[2] Qassim Univ, Unaizah Coll Sci & Arts, Dept Math, Qasim 51911, Saudi Arabia
关键词
Sturm-Liouville eigenproblems; Fractional Lagrange interpolants; Tempered fractional differentiation matrix; Fractional Derivatives; TFPDEs; Exponential convergence; DIFFERENTIAL-EQUATIONS; TUNABLE ACCURACY; DIFFUSION; SCHEMES;
D O I
10.1007/s40314-023-02475-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an accurate exponential tempered fractional spectral collocation method (TFSCM) to solve one-dimensional and time-dependent tempered fractional partial differential equations (TFPDEs). We use a family of tempered fractional Sturm-Liouville eigenproblems (TFSLP) as a basis and the fractional Lagrange interpolants (FLIs) that generally satisfy the Kronecker delta (KD) function at the employed collocation points. Firstly, we drive the corresponding tempered fractional differentiation matrices (TFDMs). Then, we treat with various linear and nonlinear TFPDEs, among them, the space-tempered fractional advection and diffusion problem, the time-space tempered fractional advection-diffusion problem (TFADP), the multi-term time-space tempered fractional problems, and the time-space tempered fractional Burgers' equation (TFBE) to investigate the numerical capability of the fractional collocation method. The study includes a numerical examination of the produced condition number k(A) of the linear systems. The accuracy and efficiency of the proposed method are studied from the standpoint of the L-infinity-norm error and exponential rate of spectral convergence.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] High-order spectral collocation method using tempered fractional Sturm–Liouville eigenproblems
    Sayed A. Dahy
    H. M. El-Hawary
    Alaa Fahim
    Tarek Aboelenen
    Computational and Applied Mathematics, 2023, 42
  • [2] TEMPERED FRACTIONAL STURM-LIOUVILLE EIGENPROBLEMS
    Zayernouri, Mohsen
    Ainsworth, Mark
    Karniadakis, George Em
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04) : A1777 - A1800
  • [3] Theory and numerical approaches of high order fractional Sturm-Liouville problems
    Houlari, Tahereh
    Dehghan, Mohammad
    Biazar, Jafar
    Nouri, Alireza
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (04) : 1564 - 1579
  • [4] On fractional-Legendre spectral Galerkin method for fractional Sturm-Liouville problems
    Al-Mdallal, Qasem M.
    CHAOS SOLITONS & FRACTALS, 2018, 116 : 261 - 267
  • [5] Spectral analysis of dissipative fractional Sturm-Liouville operators
    Eryilmaz, Aytekin
    Tuna, Huseyin
    GEORGIAN MATHEMATICAL JOURNAL, 2017, 24 (03) : 351 - 362
  • [6] Numerical approximation of tempered fractional Sturm-Liouville problem with application in fractional diffusion equation
    Yadav, Swati
    Pandey, Rajesh K.
    Pandey, Prashant K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (03) : 610 - 627
  • [7] Some results on the fractional order Sturm-Liouville problems
    Ru, Yuanfang
    Wang, Fanglei
    An, Tianqing
    An, Yukun
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [8] A Reliable Method for Solving Fractional Sturm-Liouville Problems
    Khashshan, M. M.
    Syam, Muhammed I.
    Al Mokhmari, Ahlam
    MATHEMATICS, 2018, 6 (10)
  • [9] Spectral and Oscillation Theory for an Unconventional Fractional Sturm-Liouville Problem
    Dehghan, Mohammad
    Mingarelli, Angelo B.
    FRACTAL AND FRACTIONAL, 2024, 8 (04)
  • [10] SPECTRAL EXPANSION FOR CONFORMABLE FRACTIONAL STURM-LIOUVILLE PROBLEM ON THE WHOLE LINE
    Allahverdi, Blender P.
    Tuna, Hueseyin
    Yalcinkaya, Yueksel
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (06): : 811 - 826