Prediction of Coronary Artery Calcium Using Deep Learning of Echocardiograms

被引:16
作者
Yuan, Neal [1 ,2 ]
Kwan, Alan C. [3 ,5 ]
Duffy, Grant [3 ]
Theurer, John [3 ]
Chen, Jonathan H. [6 ]
Nieman, Koen [6 ,7 ]
Botting, Patrick [3 ]
Dey, Damini [5 ]
Berman, Daniel S. [3 ]
Cheng, Susan [3 ]
Ouyang, David [3 ,4 ]
机构
[1] Univ Calif San Francisco, Sch Med, San Francisco, CA USA
[2] San Francisco VA Med Ctr, Section Cardiol, San Francisco, CA USA
[3] Smidt Heart Inst, Los Angeles, CA USA
[4] Div Artificial Intelligence Med, Dept Med, Los Angeles, CA USA
[5] Cedars Sinai Med Ctr, BioMed Imaging Res Inst, Los Angeles, CA USA
[6] Stanford Univ, Dept Med, Stanford, CA USA
[7] Stanford Univ, Dept Radiol, Stanford, CA USA
基金
美国国家卫生研究院;
关键词
Coronary artery calcium; Echocardiogram; Deep learning; Machine learning; Convolutional neural network; RISK PREDICTION; CALCIFICATION; PROGRESSION; SCORE;
D O I
10.1016/j.echo.2022.12.014
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Coronary artery calcification (CAC), often assessed by computed tomography (CT), is a powerful marker of coronary artery disease that can guide preventive therapies. Computed tomographies, however, are not always accessible or serially obtainable. It remains unclear whether other widespread tests such as trans-thoracic echocardiograms (TTEs) can be used to predict CAC. Methods: Using a data set of 2,881 TTE videos paired with coronary calcium CTs, we trained a video-based artificial intelligence convolutional neural network to predict CAC scores from parasternal long-axis views. We evaluated the model's ability to classify patients from a held-out sample as well as an external site sample into zero CAC and high CAC (CAC >= 400 Agatston units) groups by receiver operating characteristic and precision-recall curves. We also investigated whether such classifications prognosticated significant differences in 1-year mortality rates by the log-rank test of Kaplan-Meier curves. Results: Transthoracic echocardiogram artificial intelligence models had high discriminatory abilities in pre-dicting zero CAC (receiver operating characteristic area under the curve [AUC] = 0.81 [95% CI, 0.74-0.88], F1 score = 0.95) and high CAC (AUC = 0.74 [0.68-0.8], F1 score = 0.74). This performance was confirmed in an external test data set of 92 TTEs (AUC = 0.75 [0.65-0.85], F1 score = 0.77; and AUC = 0.85 [0.76-0.93], F1 score = 0.59, respectively). Risk stratification by TTE-predicted CAC performed similarly to CT CAC scores in prognosticating significant differences in 1-year survival in high-CAC patients (CT CAC >= 400 vs CT CAC < 400, P = .03; TTE-predicted CAC >= 400 vs TTE-predicted CAC < 400, P = .02). Conclusions: A video-based deep learning model successfully used TTE videos to predict zero CAC and high CAC with high accuracy. Transthoracic echocardiography-predicted CAC prognosticated differences in 1-year survival similar to CT CAC. Deep learning of TTEs holds promise for future adjunctive coronary artery disease risk stratification to guide preventive therapies. (J Am Soc Echocardiogr 2023;36:474-81.)
引用
收藏
页码:474 / +
页数:11
相关论文
共 50 条
[41]   Fully automated coronary artery calcium quantification on electrocardiogram-gated non-contrast cardiac computed tomography using deep-learning with novel Heart-labelling method [J].
Takahashi, Daigo ;
Fujimoto, Shinichiro ;
Nozaki, Yui O. ;
Kudo, Ayako ;
Kawaguchi, Yuko O. ;
Takamura, Kazuhisa ;
Hiki, Makoto ;
Sato, Eisuke ;
Tomizawa, Nobuo ;
Daida, Hiroyuki ;
Minamino, Tohru .
EUROPEAN HEART JOURNAL OPEN, 2023, 3 (06)
[42]   Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization [J].
Johri, Amer M. ;
Singh, Krishna, V ;
Mantella, Laura E. ;
Saba, Luca ;
Sharma, Aditya ;
Laird, John R. ;
Utkarsh, Kumar ;
Singh, Inder M. ;
Gupta, Suneet ;
Kalra, Manudeep S. ;
Suri, Jasjit S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
[43]   Artificial intelligence in coronary artery calcium score: rationale, different approaches, and outcomes [J].
Gennari, Antonio G. ;
Rossi, Alexia ;
De Cecco, Carlo N. ;
van Assen, Marly ;
Sartoretti, Thomas ;
Giannopoulos, Andreas A. ;
Schwyzer, Moritz ;
Huellner, Martin W. ;
Messerli, Michael .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2024, 40 (5) :951-966
[44]   Coronary Artery Calcium Scoring [J].
Mehra, Sanjay ;
Movahed, Hossein ;
Movahed, Assad .
REVIEWS IN CARDIOVASCULAR MEDICINE, 2011, 12 (02) :E94-E103
[45]   Automated coronary calcium scoring using deep learning with multicenter external validation [J].
Eng, David ;
Chute, Christopher ;
Khandwala, Nishith ;
Rajpurkar, Pranav ;
Long, Jin ;
Shleifer, Sam ;
Khalaf, Mohamed H. ;
Sandhu, Alexander T. ;
Rodriguez, Fatima ;
Maron, David J. ;
Seyyedi, Saeed ;
Marin, Daniele ;
Golub, Ilana ;
Budoff, Matthew ;
Kitamura, Felipe ;
Takahashi, Marcelo Straus ;
Filice, Ross W. ;
Shah, Rajesh ;
Mongan, John ;
Kallianos, Kimberly ;
Langlotz, Curtis P. ;
Lungren, Matthew P. ;
Ng, Andrew Y. ;
Patel, Bhavik N. .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[46]   A SURVEY OF RAINFALL PREDICTION USING DEEP LEARNING [J].
Hussain, Jamal ;
Zoremsanga, Chawngthu .
2021 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL AND INSTRUMENTATION ENGINEERING (IEEE ICECIE'2021), 2021,
[47]   DeepTox: Toxicity Prediction using Deep Learning [J].
Mayr, Andreas ;
Klambauer, Gunter ;
Unterthiner, Thomas ;
Hochreiter, Sepp .
FRONTIERS IN ENVIRONMENTAL SCIENCE, 2016, 3
[48]   End-to-End, Pixel-Wise Vessel-Specific Coronary and Aortic Calcium Detection and Scoring Using Deep Learning [J].
Singh, Gurpreet ;
Al'Aref, Subhi J. ;
Lee, Benjamin C. ;
Lee, Jing Kai ;
Tan, Swee Yaw ;
Lin, Fay Y. ;
Chang, Hyuk-Jae ;
Shaw, Leslee J. ;
Baskaran, Lohendran .
DIAGNOSTICS, 2021, 11 (02)
[49]   Performance of fully automated deep-learning-based coronary artery calcium scoring in ECG-gated calcium CT and non-gated low-dose chest CT [J].
Kim, Sihwan ;
Park, Eun-Ah ;
Ahn, Chulkyun ;
Jeong, Baren ;
Lee, Yoon Seong ;
Lee, Whal ;
Kim, Jong Hyo .
EUROPEAN RADIOLOGY, 2025,
[50]   Prediction of Coronary Artery Disease Using Machine Learning Techniques with Iris Analysis [J].
Ozbilgin, Ferdi ;
Kurnaz, Cetin ;
Aydin, Ertan .
DIAGNOSTICS, 2023, 13 (06)