Multiple weighted estimates for bilinear Calderon-Zygmund operator and its commutator on non-homogeneous spaces

被引:8
|
作者
Lu, Guanghui [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2023年 / 187卷
关键词
Non-homogeneous metric measure space; Bilinear Calderon-Zygmund operator; Commutator; (RBMO)over-tilde(mu) space; Multiple weight; MULTILINEAR SINGULAR-INTEGRALS; MORREY SPACES; ITERATED COMMUTATORS; BOUNDEDNESS;
D O I
10.1016/j.bulsci.2023.103311
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (chi, d, mu) be a non-homogeneous metric measure space. In this setting, the author proves that the bilinear Calderon-Zygmund operator (T) over tilde is bounded from the product of weighted Morrey spaces L-omega 1(p1,kappa)(mu) x L-omega 2(p2,kappa)(mu) into weighted weak Morrey spaces WL nu(omega) over right arrowp,kappa(mu), and it is also bounded from the product of generalized weighted Morrey spaces L-omega 1(p1,phi 1)(mu) x L-omega 2(p2,phi 2)(mu) into generalized weighted weak Morrey spaces L-omega 1(nu(omega) over right arrow)p,phi(mu), where (omega) over right arrow=(omega(1), omega(2)), rho is an element of[1, infinity), (omega) over right arrow is an element of A((P) over right arrow)(rho)(mu), (P) over right arrow=(p(1), p(2)) satisfying 1/p = 1/p(1) + 1/p(2) for 1 <= p(1), p(2) < infinity. Furthermore, via the sharp maximal estimate for the commutator <(T)over tilde>(b1,b2) which is generated by b(1), b(2) is an element of (RBMO) over tilde(mu) and (T) over tilde, the author shows that (T) over tilde (b1,b2) is bounded from the product of spaces L-omega 1(p1,kappa)(mu) x L-omega 2(p2,kappa)(mu) into spaces WL nu(omega) over right arrowp,kappa(mu), and it is also bounded from the product of spaces L-omega 1(p1,phi 1)(mu) x L-omega 2(p2,phi 2)(mu) into spaces WL nu(omega) over right arrowp,phi(mu). (c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Weighted estimates for commutators of anisotropic Calderon-Zygmund operators
    Li, Jinxia
    He, Jianxun
    APPLICABLE ANALYSIS, 2022, 101 (04) : 1299 - 1314
  • [22] Calderon-Zygmund Operators on Homogeneous Product Lipschitz Spaces
    Zheng, Taotao
    Chen, Jiecheng
    Dai, Jiawei
    He, Shaoyong
    Tao, Xiangxing
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 2033 - 2057
  • [23] Bilinear Calderon-Zygmund operators on Sobolev, BMO and Lipschitz spaces
    Wang, Dinghuai
    Zhou, Jiang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [24] Algebras of Calderon-Zygmund Operators on Spaces of Homogeneous Type
    Liao, Fanghui
    Wang, Yan
    Li, Zhengyang
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (04)
  • [25] Bilinear Calderon-Zygmund operators on products of variable Hardy spaces
    Tan, Jian
    FORUM MATHEMATICUM, 2019, 31 (01) : 187 - 198
  • [26] Bilinear θ-type Calderon-Zygmund operators and its commutators on generalized variable exponent Morrey spaces
    Xu, Bo
    AIMS MATHEMATICS, 2022, 7 (07): : 12123 - 12143
  • [27] MAXIMAL BILINEAR CALDERON ZYGMUND OPERATORS OF TYPE ω(t) ON NON-HOMOGENEOUS SPACE
    Zheng, Taotao
    Wang, Zheng
    Xiao, Weiliang
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (04): : 134 - 154
  • [28] WEIGHTED ESTIMATES FOR COMMUTATORS OF MULTILINEAR CALDERON-ZYGMUND OPERATORS WITH NON-DOUBLING MEASURES
    Lin Haibo
    Meng Yan
    Yang Dachun
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (01) : 1 - 18
  • [29] On weighted compactness of commutators of bilinear maximal Calderon-Zygmund singular integral operators
    Wang, Shifen
    Xue, Qingying
    FORUM MATHEMATICUM, 2022, 34 (02) : 307 - 322
  • [30] BILINEAR CALDERON-ZYGMUND OPERATORS ON TWO WEIGHT HERZ SPACES WITH VARIABLE EXPONENTS
    Wang, Shengrong
    Xu, Jingshi
    OPERATORS AND MATRICES, 2021, 15 (03): : 937 - 958