Texture-guided Saliency Distilling for Unsupervised Salient Object Detection

被引:41
作者
Zhou, Huajun [1 ]
Qiao, Bo [1 ]
Yang, Lingxiao [1 ]
Lai, Jianhuang [1 ,2 ,3 ]
Xie, Xiaohua [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Guangdong Prov Key Lab Informat Secur Technol, Shenzhen, Peoples R China
[3] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR | 2023年
基金
中国国家自然科学基金;
关键词
RECOGNITION;
D O I
10.1109/CVPR52729.2023.00701
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning-based Unsupervised Salient Object Detection (USOD) mainly relies on the noisy saliency pseudo labels that have been generated from traditional handcraft methods or pre-trained networks. To cope with the noisy labels problem, a class of methods focus on only easy samples with reliable labels but ignore valuable knowledge in hard samples. In this paper, we propose a novel USOD method to mine rich and accurate saliency knowledge from both easy and hard samples. First, we propose a Confidence-aware Saliency Distilling (CSD) strategy that scores samples conditioned on samples' confidences, which guides the model to distill saliency knowledge from easy samples to hard samples progressively. Second, we propose a Boundary-aware Texture Matching (BTM) strategy to refine the boundaries of noisy labels by matching the textures around the predicted boundaries. Extensive experiments on RGB, RGBD, RGB-T, and video SOD benchmarks prove that our method achieves state-of-the-art USOD performance. Code is available at www.github.com/moothes/A2S-v2.
引用
收藏
页码:7257 / 7267
页数:11
相关论文
共 77 条
[21]  
Gu YC, 2020, AAAI CONF ARTIF INTE, V34, P10869
[22]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[23]   Deeply Supervised Salient Object Detection with Short Connections [J].
Hou, Qibin ;
Cheng, Ming-Ming ;
Hu, Xiaowei ;
Borji, Ali ;
Tu, Zhuowen ;
Torr, Philip H. S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (04) :815-828
[24]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[25]  
Ji Wei, 2022, arXiv preprint arXiv:2205.07179
[26]   Saliency Detection via Absorbing Markov Chain [J].
Jiang, Bowen ;
Zhang, Lihe ;
Lu, Huchuan ;
Yang, Chuan ;
Yang, Ming-Hsuan .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :1665-1672
[27]  
Ju R, 2014, IEEE IMAGE PROC, P1115, DOI 10.1109/ICIP.2014.7025222
[28]   Video Segmentation by Tracking Many Figure-Ground Segments [J].
Li, Fuxin ;
Kim, Taeyoung ;
Humayun, Ahmad ;
Tsai, David ;
Rehg, James M. .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :2192-2199
[29]  
Li GB, 2015, PROC CVPR IEEE, P5455, DOI 10.1109/CVPR.2015.7299184
[30]   The Secrets of Salient Object Segmentation [J].
Li, Yin ;
Hou, Xiaodi ;
Koch, Christof ;
Rehg, James M. ;
Yuille, Alan L. .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :280-287