Texture-guided Saliency Distilling for Unsupervised Salient Object Detection

被引:28
作者
Zhou, Huajun [1 ]
Qiao, Bo [1 ]
Yang, Lingxiao [1 ]
Lai, Jianhuang [1 ,2 ,3 ]
Xie, Xiaohua [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Guangdong Prov Key Lab Informat Secur Technol, Shenzhen, Peoples R China
[3] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR | 2023年
基金
中国国家自然科学基金;
关键词
RECOGNITION;
D O I
10.1109/CVPR52729.2023.00701
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning-based Unsupervised Salient Object Detection (USOD) mainly relies on the noisy saliency pseudo labels that have been generated from traditional handcraft methods or pre-trained networks. To cope with the noisy labels problem, a class of methods focus on only easy samples with reliable labels but ignore valuable knowledge in hard samples. In this paper, we propose a novel USOD method to mine rich and accurate saliency knowledge from both easy and hard samples. First, we propose a Confidence-aware Saliency Distilling (CSD) strategy that scores samples conditioned on samples' confidences, which guides the model to distill saliency knowledge from easy samples to hard samples progressively. Second, we propose a Boundary-aware Texture Matching (BTM) strategy to refine the boundaries of noisy labels by matching the textures around the predicted boundaries. Extensive experiments on RGB, RGBD, RGB-T, and video SOD benchmarks prove that our method achieves state-of-the-art USOD performance. Code is available at www.github.com/moothes/A2S-v2.
引用
收藏
页码:7257 / 7267
页数:11
相关论文
共 75 条
  • [1] Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
  • [2] [Anonymous], 2013, GENE
  • [3] [Anonymous], 2018, CHIN C IM GRAPH TECH
  • [4] Bengio Y., 2009, INT C MACH LEARN
  • [5] Brox T, 2010, LECT NOTES COMPUT SC, V6315, P282, DOI 10.1007/978-3-642-15555-0_21
  • [6] Exploring Rich and Efficient Spatial Temporal Interactions for Real-Time Video Salient Object Detection
    Chen, Chenglizhao
    Wang, Guotao
    Peng, Chong
    Fang, Yuming
    Zhang, Dingwen
    Qin, Hong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3995 - 4007
  • [7] Sex-specific risk profiles for suicide mortality in bipolar disorder: incidence, healthcare utilization and comorbidity
    Chen, Pao-Huan
    Tsai, Shang-Ying
    Pan, Chun-Hung
    Chen, Yi-Lung
    Chang, Hu-Ming
    Su, Sheng-Siang
    Chen, Chiao-Chicy
    Kuo, Chian-Jue
    [J]. PSYCHOLOGICAL MEDICINE, 2023, 53 (04) : 1500 - 1509
  • [8] Ferroptosis: machinery and regulation
    Chen, Xin
    Li, Jingbo
    Kang, Rui
    Klionsky, Daniel J.
    Tang, Daolin
    [J]. AUTOPHAGY, 2021, 17 (09) : 2054 - 2081
  • [9] Learned Fast HEVC Intra Coding
    Chen, Zhibo
    Shi, Jun
    Li, Weiping
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 5431 - 5446
  • [10] Cheng X., 2022, IEEE Transactions on Multimedia