Texture-guided Saliency Distilling for Unsupervised Salient Object Detection

被引:41
作者
Zhou, Huajun [1 ]
Qiao, Bo [1 ]
Yang, Lingxiao [1 ]
Lai, Jianhuang [1 ,2 ,3 ]
Xie, Xiaohua [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Guangdong Prov Key Lab Informat Secur Technol, Shenzhen, Peoples R China
[3] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR | 2023年
基金
中国国家自然科学基金;
关键词
RECOGNITION;
D O I
10.1109/CVPR52729.2023.00701
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning-based Unsupervised Salient Object Detection (USOD) mainly relies on the noisy saliency pseudo labels that have been generated from traditional handcraft methods or pre-trained networks. To cope with the noisy labels problem, a class of methods focus on only easy samples with reliable labels but ignore valuable knowledge in hard samples. In this paper, we propose a novel USOD method to mine rich and accurate saliency knowledge from both easy and hard samples. First, we propose a Confidence-aware Saliency Distilling (CSD) strategy that scores samples conditioned on samples' confidences, which guides the model to distill saliency knowledge from easy samples to hard samples progressively. Second, we propose a Boundary-aware Texture Matching (BTM) strategy to refine the boundaries of noisy labels by matching the textures around the predicted boundaries. Extensive experiments on RGB, RGBD, RGB-T, and video SOD benchmarks prove that our method achieves state-of-the-art USOD performance. Code is available at www.github.com/moothes/A2S-v2.
引用
收藏
页码:7257 / 7267
页数:11
相关论文
共 77 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]  
[Anonymous], 2013, Gene
[3]  
[Anonymous], 2021, P AAAI C ART INT, DOI DOI 10.1109/CPRE48231.2021.9429848
[4]  
[Anonymous], 2018, CHIN C IM GRAPH TECH
[5]  
[Anonymous], P IEEE C COMP VIS PA
[6]  
Bengio Yoshua, 2009, P 26 ANN INT C MACH, DOI DOI 10.1145/1553374.1553380
[7]  
Brox T, 2010, LECT NOTES COMPUT SC, V6315, P282, DOI 10.1007/978-3-642-15555-0_21
[8]   Exploring Rich and Efficient Spatial Temporal Interactions for Real-Time Video Salient Object Detection [J].
Chen, Chenglizhao ;
Wang, Guotao ;
Peng, Chong ;
Fang, Yuming ;
Zhang, Dingwen ;
Qin, Hong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :3995-4007
[9]   Sex-specific risk profiles for suicide mortality in bipolar disorder: incidence, healthcare utilization and comorbidity [J].
Chen, Pao-Huan ;
Tsai, Shang-Ying ;
Pan, Chun-Hung ;
Chen, Yi-Lung ;
Chang, Hu-Ming ;
Su, Sheng-Siang ;
Chen, Chiao-Chicy ;
Kuo, Chian-Jue .
PSYCHOLOGICAL MEDICINE, 2023, 53 (04) :1500-1509
[10]  
Chen XL, 2020, Arxiv, DOI arXiv:2003.04297